Files @ 95e39e5412bd
Branch filter:

Location: vmkdrivers/BLD/build/HEADERS/92-vmkdrivers-asm-x64/vmkernel64/release/asm/bitops.h

unknown
ESXi-6.0-GA
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
/*
 * Portions Copyright 2008, 2009 VMware, Inc.
 */
#ifndef _X86_64_BITOPS_H
#define _X86_64_BITOPS_H

#if defined(__VMKLNX__)
#include "vmkapi.h"
#endif /* defined(__VMKLNX__) */

/*
 * Copyright 1992, Linus Torvalds.
 */

#include <asm/alternative.h>

#define ADDR (*(volatile long *) addr)

/**
 * set_bit - Atomically set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This function is atomic and may not be reordered.  See __set_bit()
 * if you do not require the atomic guarantees.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 *
 * RETURN VALUE: 
 * NONE
 *
 */
/* _VMKLNX_CODECHECK_: set_bit */
static __inline__ void set_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__( LOCK_PREFIX
		"btsl %1,%0"
		:"+m" (ADDR)
		:"dIr" (nr) : "memory");
}

/**
 * __set_bit - Set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
static __inline__ void __set_bit(int nr, volatile void * addr)
{
	__asm__ volatile(
		"btsl %1,%0"
		:"+m" (ADDR)
		:"dIr" (nr) : "memory");
}

/**
 * clear_bit - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * Clears a bit in memory.
 * clear_bit() is atomic and may not be reordered.  However, it does
 * not contain a memory barrier, so if it is used for locking purposes,
 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
 * in order to ensure changes are visible on other processors.
 *
 * RETURN VALUE:
 * None
 *
 */
/* _VMKLNX_CODECHECK_: clear_bit */
static __inline__ void clear_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__( LOCK_PREFIX
		"btrl %1,%0"
		:"+m" (ADDR)
		:"dIr" (nr));
}

static __inline__ void __clear_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__(
		"btrl %1,%0"
		:"+m" (ADDR)
		:"dIr" (nr));
}

#define smp_mb__before_clear_bit()	barrier()
#define smp_mb__after_clear_bit()	barrier()

/**
 * __change_bit - Toggle a bit in memory
 * @nr: the bit to change
 * @addr: the address to start counting from
 *
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
static __inline__ void __change_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__(
		"btcl %1,%0"
		:"+m" (ADDR)
		:"dIr" (nr));
}

/**
 * change_bit - Toggle a bit in memory
 * @nr: Bit to change
 * @addr: Address to start counting from
 *
 * change_bit() is atomic and may not be reordered.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
static __inline__ void change_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__( LOCK_PREFIX
		"btcl %1,%0"
		:"+m" (ADDR)
		:"dIr" (nr));
}

/**
 * test_and_set_bit - Set a bit and return its old state
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 * It tests if the bit at position nr in *addr is 0 or not and sets it to 1.
 * Note that the return value need not be 1 (just non-zero) if the bit was 1.
 *
 * RETURN VALUE:
 * 0 if original bit was 0 and NON-ZERO otherwise
 */
/* _VMKLNX_CODECHECK_: test_and_set_bit */
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__ __volatile__( LOCK_PREFIX
		"btsl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),"+m" (ADDR)
		:"dIr" (nr) : "memory");
	return oldbit;
}

/**
 * __test_and_set_bit - Set a bit and return its old state
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 * It tests if the  bit at position nr in *addr is 0 or not and sets it to 1.
 * Note that the return value need not be 1 (just non-zero) if the bit was 1.
 *
 * RETURN VALUE:
 * 0 if original bit was 0 and NON-ZERO otherwise
 *
 * SEE ALSO:
 * test_and_set_bit
 */
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__(
		"btsl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),"+m" (ADDR)
		:"dIr" (nr));
	return oldbit;
}

/**
 * test_and_clear_bit - Clear a bit and return its old state
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 * It tests if the  bit at position nr in *addr is 0 or not and sets it to 0.
 * Note that the return value need not be 1 (just non-zero) if the bit was 1.
 *
 * RETURN VALUE:
 * 0 if original bit was 0 and NON-ZERO otherwise
 */
/* _VMKLNX_CODECHECK_: test_and_clear_bit */
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__ __volatile__( LOCK_PREFIX
		"btrl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),"+m" (ADDR)
		:"dIr" (nr) : "memory");
	return oldbit;
}

/**
 * __test_and_clear_bit - Clear a bit and return its old state
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 * It tests if the  bit at position nr in *addr is 0 or not and sets it to 0.
 * Note that the return value need not be 1 (just non-zero) if the bit was 1.
 *
 * RETURN VALUE:
 * 0 if original bit was 0 and NON-ZERO otherwise
 *
 * SEE ALSO:
 * test_and_clear_bit
 */
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__(
		"btrl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),"+m" (ADDR)
		:"dIr" (nr));
	return oldbit;
}

/**
 * __test_and_change_bit - Toggle a bit and return its old state
 * @nr: Bit to toggle
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * It also implies a memory barrier.
 * It tests if the  bit at position nr in *addr is 0 or not and toggles it.
 * Note that the return value need not be 1 (just non-zero) if the bit was 1.
 *
 * RETURN VALUE:
 * 0 if original bit was 0 and NON-ZERO otherwise
 *
 * SEE ALSO:
 * test_and_change_bit
 */
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__ __volatile__(
		"btcl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),"+m" (ADDR)
		:"dIr" (nr) : "memory");
	return oldbit;
}

/**
 * test_and_change_bit - Toggle a bit and return its old state
 * @nr: Bit to toggle
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 * It tests if the  bit at position nr in *addr is 0 or not and toggles it.
 * Note that the return value need not be 1 (just non-zero) if the bit was 1.
 *
 * RETURN VALUE:
 * 0 if original bit was 0 and NON-ZERO otherwise
 */
/* _VMKLNX_CODECHECK_: test_and_change_bit */
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__ __volatile__( LOCK_PREFIX
		"btcl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),"+m" (ADDR)
		:"dIr" (nr) : "memory");
	return oldbit;
}

/**                                          
 *  constant_test_bit - determine whether a bit is set
 *  @nr: bit number to test
 *  @addr: addr to test
 *                                           
 *  Determines the state of the specified bit.
 *  This is used when @nr is known to be constant at compile-time.
 *  Use test_bit() instead of using this directly.
 *                                           
 *  RETURN VALUE:
 *  0 if the bit was 0 and NON-ZERO otherwise
 */
/* _VMKLNX_CODECHECK_: constant_test_bit */
static __inline__ int constant_test_bit(int nr, const volatile void * addr)
{
	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
}

/**                                          
 *  variable_test_bit - determine whether a bit is set
 *  @nr: bit number to test
 *  @addr: addr to test
 *                                           
 *  Determines the state of the specified bit.
 *  This is used when @nr is a variable.
 *  Use test_bit() instead of using this directly.
 * 
 *  RETURN VALUE:
 *  0 if the bit was 0 and NON-ZERO otherwise
 */
/* _VMKLNX_CODECHECK_: variable_test_bit */
static __inline__ int variable_test_bit(int nr, volatile const void * addr)
{
	int oldbit;

	__asm__ __volatile__(
		"btl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit)
		:"m" (ADDR),"dIr" (nr));
	return oldbit;
}
/**
 *  test_bit - Determine if bit at given position is set
 *  @nr: number of bit to be tested
 *  @addr: pointer to byte to test
 *
 *  It tests if the bit at position nr in *addr is 0 or not.
 *  If the bit number is a constant an optimized bit extract is done.
 *  Note that the return value need not be 1 (just non-zero) if the bit was 1.
 *
 *  SYNOPSIS:
 *  #define test_bit(nr,addr)
 *
 *  RETURN VALUE:
 *  0 if the bit was 0 and NON-ZERO otherwise
 */
/* _VMKLNX_CODECHECK_: test_bit */
#define test_bit(nr,addr) \
(__builtin_constant_p(nr) ? \
 constant_test_bit((nr),(addr)) : \
 variable_test_bit((nr),(addr)))

#undef ADDR
#if defined(__VMKLNX__)
/**
 * find_first_zero_bit - find the first zero bit in a memory region
 * @addr: The address to start the search at
 * @size: The maximum bitnumber to search
 *
 * Finds the first zero bit in a specified memory region
 *
 * RETURN VALUE:
 * Returns the bit-number of the first zero bit, not the number of the byte
 * containing a bit.
 * If result is equal to or greater than size means no zero bit is found
 */
/* _VMKLNX_CODECHECK_: find_first_zero_bit */
static __inline__ long 
find_first_zero_bit(const unsigned long * addr, unsigned long size)
{
        long d0, d1, d2;
        long res;

        /*
         * We must test the size in words, not in bits, because
         * otherwise incoming sizes in the range -63..-1 will not run
         * any scasq instructions, and then the flags used by the je
         * instruction will have whatever random value was in place
         * before.  Nobody should call us like that, but
         * find_next_zero_bit() does when offset and size are at the
         * same word and it fails to find a zero itself.
         */
        size += 63;
        size >>= 6;
        if (!size)
                return 0;

        vmk_CPUEnsureClearDF();
        asm volatile(
                "  repe; scasq\n"
                "  je 1f\n"
                "  xorq -8(%%rdi),%%rax\n"
                "  subq $8,%%rdi\n"
                "  bsfq %%rax,%%rdx\n"
                "1:  subq %[addr],%%rdi\n"
                "  shlq $3,%%rdi\n"
                "  addq %%rdi,%%rdx"
                :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
                :"0" (0ULL), "1" (size), "2" (addr), "3" (-1ULL),
                 [addr] "S" (addr) : "memory");
        /*
         * Any register would do for [addr] above, but GCC tends to
         * prefer rbx over rsi, even though rsi is readily available
         * and doesn't have to be saved.
         */

        return res;
}

/**
 * find_next_zero_bit - find the first zero bit in a memory region
 * @addr: The address to base the search on
 * @offset: The bitnumber to start searching at
 * @size: The maximum size to search
 *
 * Finds the first zero bit in a specified memory region
 *
 * RETURN VALUE:
 * Returns the bit-number of the first zero bit in a memory region after the 
 * specified offset
 * If result is equal to or greater than size means no zero bit is found
 */
/* _VMKLNX_CODECHECK_: find_next_zero_bit */
static __inline__ long 
find_next_zero_bit (const unsigned long * addr, long size, long offset)
{
        const unsigned long * p = addr + (offset >> 6);
        unsigned long set = 0;
        unsigned long res, bit = offset&63;

        if (bit) {

                /*
                 * Look for zero in first word
                 */
                asm("bsfq %1,%0\n\t"
                    "cmoveq %2,%0"
                    : "=r" (set)
                    : "r" (~(*p >> bit)), "r"(64L));
                if (set < (64 - bit))
                        return set + offset;
                set = 64 - bit;
                p++;
        }

        /*
         * No zero yet, search remaining full words for a zero
         */
        res = find_first_zero_bit (p, size - 64 * (p - addr));

        return (offset + set + res);
}

/**
 * find_first_bit - find the first set bit in a memory region
 * @addr: The address to start the search at
 * @size: The maximum size to search
 *
 * Finds the first set bit in a specified memory region
 *
 * RETURN VALUE:
 * Returns the bit-number of the first set bit, not the number of the byte
 * containing a bit.
 *
 */
/* _VMKLNX_CODECHECK_: find_first_bit */
static __inline__ long find_first_bit(const unsigned long * addr, unsigned long size)
{
	long d0, d1;
	long res;

	/*
	 * We must test the size in words, not in bits, because
	 * otherwise incoming sizes in the range -63..-1 will not run
	 * any scasq instructions, and then the flags used by the jz
	 * instruction will have whatever random value was in place
	 * before.  Nobody should call us like that, but
	 * find_next_bit() does when offset and size are at the same
	 * word and it fails to find a one itself.
	 */
	size += 63;
	size >>= 6;
	if (!size)
		return 0;

	vmk_CPUEnsureClearDF();
	asm volatile(
                "   repe; scasq\n"
		"   jz 1f\n"
		"   subq $8,%%rdi\n"
		"   bsfq (%%rdi),%%rax\n"
		"1: subq %[addr],%%rdi\n"
		"   shlq $3,%%rdi\n"
		"   addq %%rdi,%%rax"
		:"=a" (res), "=&c" (d0), "=&D" (d1)
		:"0" (0ULL), "1" (size), "2" (addr),
		 [addr] "r" (addr) : "memory");
	return res;
}

/**
 * find_next_bit - find the first set bit in a memory region
 * @addr: The address to base the search on
 * @size: The maximum size to search
 * @offset: The bitnumber to start searching at
 *
 * Finds the first set bit in a specified memory region
 *
 * RETURN VALUE:
 * Position of the first set bit in the specified memory, starting from offset.
 * If none is found, the full word, starting from addr, is searched.
 */
/* _VMKLNX_CODECHECK_: find_next_bit */
static __inline__ long find_next_bit(const unsigned long * addr, long size, long offset)
{
	const unsigned long * p = addr + (offset >> 6);
	unsigned long set = 0, bit = offset & 63, res;

	if (bit) {
		/*
		 * Look for nonzero in the first 64 bits:
		 */
		asm("bsfq %1,%0\n\t"
		    "cmoveq %2,%0\n\t"
		    : "=r" (set)
		    : "r" (*p >> bit), "r" (64L));
		if (set < (64 - bit))
			return set + offset;
		set = 64 - bit;
		p++;
	}
	/*
	 * No set bit yet, search remaining full words for a bit
	 */
	res = find_first_bit (p, size - 64 * (p - addr));
	return (offset + set + res);
}


#else /* !defined(__VMKLNX__) */
extern long find_first_zero_bit(const unsigned long * addr, unsigned long size);
extern long find_next_zero_bit (const unsigned long * addr, long size, long offset);
extern long find_first_bit(const unsigned long * addr, unsigned long size);
extern long find_next_bit(const unsigned long * addr, long size, long offset);
#endif /* defined(__VMKLNX__) */

/**                                          
 * __scanbit - searches unsigned long value for the least significant set bit 
 * @val: The unsigned long value to scan for the set bit
 * @max: The value to return if no set bit found
 *
 * Finds the least significant set bit in specified unsigned long value
 *
 * RETURN VALUE:
 * Index of first bit set in val or max when no bit is set
 */                                          
/* _VMKLNX_CODECHECK_: __scanbit */
static inline unsigned long __scanbit(unsigned long val, unsigned long max)
{
	asm("bsfq %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max));
	return val;
}

#define find_first_bit(addr,size) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
  (__scanbit(*(unsigned long *)addr,(size))) : \
  find_first_bit(addr,size)))

#define find_next_bit(addr,size,off) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? 	  \
  ((off) + (__scanbit((*(unsigned long *)addr) >> (off),(size)-(off)))) : \
	find_next_bit(addr,size,off)))

#define find_first_zero_bit(addr,size) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
  (__scanbit(~*(unsigned long *)addr,(size))) : \
  	find_first_zero_bit(addr,size)))
	
#define find_next_zero_bit(addr,size,off) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? 	  \
  ((off)+(__scanbit(~(((*(unsigned long *)addr)) >> (off)),(size)-(off)))) : \
	find_next_zero_bit(addr,size,off)))

/* 
 * Find string of zero bits in a bitmap. -1 when not found.
 */ 
extern unsigned long 
find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len);

static inline void set_bit_string(unsigned long *bitmap, unsigned long i, 
				  int len) 
{ 
	unsigned long end = i + len; 
	while (i < end) {
		__set_bit(i, bitmap); 
		i++;
	}
} 

static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i, 
				    int len) 
{ 
	unsigned long end = i + len; 
	while (i < end) {
		__clear_bit(i, bitmap); 
		i++;
	}
} 

/**
 * ffz - find first zero in word.
 * @word: The word to search
 *
 * Undefined if no zero exists, so code should check against ~0UL first.
 *
 * RETURN VALUE:
 * Position of the first zero in the word 
 */
/* _VMKLNX_CODECHECK_: ffz */
static __inline__ unsigned long ffz(unsigned long word)
{
	__asm__("bsfq %1,%0"
		:"=r" (word)
		:"r" (~word));
	return word;
}

/**
 * __ffs - find first set bit in word
 * @word: The word to search
 *
 * Undefined if no bit is set, so code should check against 0 first.
 *
 * RETURN VALUE:
 * Position of the first set bit in the word 
 */
/* _VMKLNX_CODECHECK_: __ffs */
static __inline__ unsigned long __ffs(unsigned long word)
{
	__asm__("bsfq %1,%0"
		:"=r" (word)
		:"rm" (word));
	return word;
}

/*
 * __fls: find last bit set.
 * @word: The word to search
 *
 * Undefined if no zero exists, so code should check against ~0UL first.
 */
static __inline__ unsigned long __fls(unsigned long word)
{
	__asm__("bsrq %1,%0"
		:"=r" (word)
		:"rm" (word));
	return word;
}

#ifdef __KERNEL__

#include <asm-generic/bitops/sched.h>

/**
 * ffs - find first bit set
 * @x: the word to search
 *
 * Finds the first bit set in the referenced word
 *
 * RETURN VALUE:
 * Position of the first set bit
 */
/* _VMKLNX_CODECHECK_: ffs */
static __inline__ int ffs(int x)
{
	int r;

	__asm__("bsfl %1,%0\n\t"
		"cmovzl %2,%0" 
		: "=r" (r) : "rm" (x), "r" (-1));
	return r+1;
}

/**
 * fls64 - find last bit set in 64 bit word
 * @x: the word to search
 *
 * This is defined the same way as fls.
 */
static __inline__ int fls64(__u64 x)
{
	if (x == 0)
		return 0;
	return __fls(x) + 1;
}

/**
 * fls - find last bit set
 * @x: the word to search
 *
 * Finds last bit set in the specified word
 * 
 * RETURN VALUE:
 * The last set bit in specified word
 */
/* _VMKLNX_CODECHECK_: fls */
static __inline__ int fls(int x)
{
	int r;

	__asm__("bsrl %1,%0\n\t"
		"cmovzl %2,%0"
		: "=&r" (r) : "rm" (x), "rm" (-1));
	return r+1;
}

#include <asm-generic/bitops/hweight.h>

#endif /* __KERNEL__ */

#ifdef __KERNEL__

#include <asm-generic/bitops/ext2-non-atomic.h>

#define ext2_set_bit_atomic(lock,nr,addr) \
	        test_and_set_bit((nr),(unsigned long*)addr)
#define ext2_clear_bit_atomic(lock,nr,addr) \
	        test_and_clear_bit((nr),(unsigned long*)addr)

#include <asm-generic/bitops/minix.h>

#endif /* __KERNEL__ */

#endif /* _X86_64_BITOPS_H */