File diff 052c0cbc4bbf → 85642093068c
BLD/build/HEADERS/CUR-92-vmkdrivers-asm-x64/vmkernel64/release/asm/bitops.h
Show inline comments
 
new file 100644
 
/*
 
 * Portions Copyright 2008, 2009 VMware, Inc.
 
 */
 
#ifndef _X86_64_BITOPS_H
 
#define _X86_64_BITOPS_H
 

	
 
#if defined(__VMKLNX__)
 
#include "vmkapi.h"
 
#endif /* defined(__VMKLNX__) */
 

	
 
/*
 
 * Copyright 1992, Linus Torvalds.
 
 */
 

	
 
#include <asm/alternative.h>
 

	
 
#define ADDR (*(volatile long *) addr)
 

	
 
/**
 
 * set_bit - Atomically set a bit in memory
 
 * @nr: the bit to set
 
 * @addr: the address to start counting from
 
 *
 
 * This function is atomic and may not be reordered.  See __set_bit()
 
 * if you do not require the atomic guarantees.
 
 * Note that @nr may be almost arbitrarily large; this function is not
 
 * restricted to acting on a single-word quantity.
 
 *
 
 * RETURN VALUE: 
 
 * NONE
 
 *
 
 */
 
/* _VMKLNX_CODECHECK_: set_bit */
 
static __inline__ void set_bit(int nr, volatile void * addr)
 
{
 
	__asm__ __volatile__( LOCK_PREFIX
 
		"btsl %1,%0"
 
		:"+m" (ADDR)
 
		:"dIr" (nr) : "memory");
 
}
 

	
 
/**
 
 * __set_bit - Set a bit in memory
 
 * @nr: the bit to set
 
 * @addr: the address to start counting from
 
 *
 
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 
 * If it's called on the same region of memory simultaneously, the effect
 
 * may be that only one operation succeeds.
 
 */
 
static __inline__ void __set_bit(int nr, volatile void * addr)
 
{
 
	__asm__ volatile(
 
		"btsl %1,%0"
 
		:"+m" (ADDR)
 
		:"dIr" (nr) : "memory");
 
}
 

	
 
/**
 
 * clear_bit - Clears a bit in memory
 
 * @nr: Bit to clear
 
 * @addr: Address to start counting from
 
 *
 
 * Clears a bit in memory.
 
 * clear_bit() is atomic and may not be reordered.  However, it does
 
 * not contain a memory barrier, so if it is used for locking purposes,
 
 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
 
 * in order to ensure changes are visible on other processors.
 
 *
 
 * RETURN VALUE:
 
 * None
 
 *
 
 */
 
/* _VMKLNX_CODECHECK_: clear_bit */
 
static __inline__ void clear_bit(int nr, volatile void * addr)
 
{
 
	__asm__ __volatile__( LOCK_PREFIX
 
		"btrl %1,%0"
 
		:"+m" (ADDR)
 
		:"dIr" (nr));
 
}
 

	
 
static __inline__ void __clear_bit(int nr, volatile void * addr)
 
{
 
	__asm__ __volatile__(
 
		"btrl %1,%0"
 
		:"+m" (ADDR)
 
		:"dIr" (nr));
 
}
 

	
 
#define smp_mb__before_clear_bit()	barrier()
 
#define smp_mb__after_clear_bit()	barrier()
 

	
 
/**
 
 * __change_bit - Toggle a bit in memory
 
 * @nr: the bit to change
 
 * @addr: the address to start counting from
 
 *
 
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 
 * If it's called on the same region of memory simultaneously, the effect
 
 * may be that only one operation succeeds.
 
 */
 
static __inline__ void __change_bit(int nr, volatile void * addr)
 
{
 
	__asm__ __volatile__(
 
		"btcl %1,%0"
 
		:"+m" (ADDR)
 
		:"dIr" (nr));
 
}
 

	
 
/**
 
 * change_bit - Toggle a bit in memory
 
 * @nr: Bit to change
 
 * @addr: Address to start counting from
 
 *
 
 * change_bit() is atomic and may not be reordered.
 
 * Note that @nr may be almost arbitrarily large; this function is not
 
 * restricted to acting on a single-word quantity.
 
 */
 
static __inline__ void change_bit(int nr, volatile void * addr)
 
{
 
	__asm__ __volatile__( LOCK_PREFIX
 
		"btcl %1,%0"
 
		:"+m" (ADDR)
 
		:"dIr" (nr));
 
}
 

	
 
/**
 
 * test_and_set_bit - Set a bit and return its old state
 
 * @nr: Bit to set
 
 * @addr: Address to count from
 
 *
 
 * This operation is atomic and cannot be reordered.  
 
 * It also implies a memory barrier.
 
 * It tests if the bit at position nr in *addr is 0 or not and sets it to 1.
 
 * Note that the return value need not be 1 (just non-zero) if the bit was 1.
 
 *
 
 * RETURN VALUE:
 
 * 0 if original bit was 0 and NON-ZERO otherwise
 
 */
 
/* _VMKLNX_CODECHECK_: test_and_set_bit */
 
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
 
{
 
	int oldbit;
 

	
 
	__asm__ __volatile__( LOCK_PREFIX
 
		"btsl %2,%1\n\tsbbl %0,%0"
 
		:"=r" (oldbit),"+m" (ADDR)
 
		:"dIr" (nr) : "memory");
 
	return oldbit;
 
}
 

	
 
/**
 
 * __test_and_set_bit - Set a bit and return its old state
 
 * @nr: Bit to set
 
 * @addr: Address to count from
 
 *
 
 * This operation is non-atomic and can be reordered.  
 
 * If two examples of this operation race, one can appear to succeed
 
 * but actually fail.  You must protect multiple accesses with a lock.
 
 * It tests if the  bit at position nr in *addr is 0 or not and sets it to 1.
 
 * Note that the return value need not be 1 (just non-zero) if the bit was 1.
 
 *
 
 * RETURN VALUE:
 
 * 0 if original bit was 0 and NON-ZERO otherwise
 
 *
 
 * SEE ALSO:
 
 * test_and_set_bit
 
 */
 
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
 
{
 
	int oldbit;
 

	
 
	__asm__(
 
		"btsl %2,%1\n\tsbbl %0,%0"
 
		:"=r" (oldbit),"+m" (ADDR)
 
		:"dIr" (nr));
 
	return oldbit;
 
}
 

	
 
/**
 
 * test_and_clear_bit - Clear a bit and return its old state
 
 * @nr: Bit to clear
 
 * @addr: Address to count from
 
 *
 
 * This operation is atomic and cannot be reordered.  
 
 * It also implies a memory barrier.
 
 * It tests if the  bit at position nr in *addr is 0 or not and sets it to 0.
 
 * Note that the return value need not be 1 (just non-zero) if the bit was 1.
 
 *
 
 * RETURN VALUE:
 
 * 0 if original bit was 0 and NON-ZERO otherwise
 
 */
 
/* _VMKLNX_CODECHECK_: test_and_clear_bit */
 
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
 
{
 
	int oldbit;
 

	
 
	__asm__ __volatile__( LOCK_PREFIX
 
		"btrl %2,%1\n\tsbbl %0,%0"
 
		:"=r" (oldbit),"+m" (ADDR)
 
		:"dIr" (nr) : "memory");
 
	return oldbit;
 
}
 

	
 
/**
 
 * __test_and_clear_bit - Clear a bit and return its old state
 
 * @nr: Bit to clear
 
 * @addr: Address to count from
 
 *
 
 * This operation is non-atomic and can be reordered.  
 
 * If two examples of this operation race, one can appear to succeed
 
 * but actually fail.  You must protect multiple accesses with a lock.
 
 * It tests if the  bit at position nr in *addr is 0 or not and sets it to 0.
 
 * Note that the return value need not be 1 (just non-zero) if the bit was 1.
 
 *
 
 * RETURN VALUE:
 
 * 0 if original bit was 0 and NON-ZERO otherwise
 
 *
 
 * SEE ALSO:
 
 * test_and_clear_bit
 
 */
 
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
 
{
 
	int oldbit;
 

	
 
	__asm__(
 
		"btrl %2,%1\n\tsbbl %0,%0"
 
		:"=r" (oldbit),"+m" (ADDR)
 
		:"dIr" (nr));
 
	return oldbit;
 
}
 

	
 
/**
 
 * __test_and_change_bit - Toggle a bit and return its old state
 
 * @nr: Bit to toggle
 
 * @addr: Address to count from
 
 *
 
 * This operation is non-atomic and can be reordered.  
 
 * It also implies a memory barrier.
 
 * It tests if the  bit at position nr in *addr is 0 or not and toggles it.
 
 * Note that the return value need not be 1 (just non-zero) if the bit was 1.
 
 *
 
 * RETURN VALUE:
 
 * 0 if original bit was 0 and NON-ZERO otherwise
 
 *
 
 * SEE ALSO:
 
 * test_and_change_bit
 
 */
 
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
 
{
 
	int oldbit;
 

	
 
	__asm__ __volatile__(
 
		"btcl %2,%1\n\tsbbl %0,%0"
 
		:"=r" (oldbit),"+m" (ADDR)
 
		:"dIr" (nr) : "memory");
 
	return oldbit;
 
}
 

	
 
/**
 
 * test_and_change_bit - Toggle a bit and return its old state
 
 * @nr: Bit to toggle
 
 * @addr: Address to count from
 
 *
 
 * This operation is atomic and cannot be reordered.  
 
 * It also implies a memory barrier.
 
 * It tests if the  bit at position nr in *addr is 0 or not and toggles it.
 
 * Note that the return value need not be 1 (just non-zero) if the bit was 1.
 
 *
 
 * RETURN VALUE:
 
 * 0 if original bit was 0 and NON-ZERO otherwise
 
 */
 
/* _VMKLNX_CODECHECK_: test_and_change_bit */
 
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
 
{
 
	int oldbit;
 

	
 
	__asm__ __volatile__( LOCK_PREFIX
 
		"btcl %2,%1\n\tsbbl %0,%0"
 
		:"=r" (oldbit),"+m" (ADDR)
 
		:"dIr" (nr) : "memory");
 
	return oldbit;
 
}
 

	
 
/**                                          
 
 *  constant_test_bit - determine whether a bit is set
 
 *  @nr: bit number to test
 
 *  @addr: addr to test
 
 *                                           
 
 *  Determines the state of the specified bit.
 
 *  This is used when @nr is known to be constant at compile-time.
 
 *  Use test_bit() instead of using this directly.
 
 *                                           
 
 *  RETURN VALUE:
 
 *  0 if the bit was 0 and NON-ZERO otherwise
 
 */
 
/* _VMKLNX_CODECHECK_: constant_test_bit */
 
static __inline__ int constant_test_bit(int nr, const volatile void * addr)
 
{
 
	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
 
}
 

	
 
/**                                          
 
 *  variable_test_bit - determine whether a bit is set
 
 *  @nr: bit number to test
 
 *  @addr: addr to test
 
 *                                           
 
 *  Determines the state of the specified bit.
 
 *  This is used when @nr is a variable.
 
 *  Use test_bit() instead of using this directly.
 
 * 
 
 *  RETURN VALUE:
 
 *  0 if the bit was 0 and NON-ZERO otherwise
 
 */
 
/* _VMKLNX_CODECHECK_: variable_test_bit */
 
static __inline__ int variable_test_bit(int nr, volatile const void * addr)
 
{
 
	int oldbit;
 

	
 
	__asm__ __volatile__(
 
		"btl %2,%1\n\tsbbl %0,%0"
 
		:"=r" (oldbit)
 
		:"m" (ADDR),"dIr" (nr));
 
	return oldbit;
 
}
 
/**
 
 *  test_bit - Determine if bit at given position is set
 
 *  @nr: number of bit to be tested
 
 *  @addr: pointer to byte to test
 
 *
 
 *  It tests if the bit at position nr in *addr is 0 or not.
 
 *  If the bit number is a constant an optimized bit extract is done.
 
 *  Note that the return value need not be 1 (just non-zero) if the bit was 1.
 
 *
 
 *  SYNOPSIS:
 
 *  #define test_bit(nr,addr)
 
 *
 
 *  RETURN VALUE:
 
 *  0 if the bit was 0 and NON-ZERO otherwise
 
 */
 
/* _VMKLNX_CODECHECK_: test_bit */
 
#define test_bit(nr,addr) \
 
(__builtin_constant_p(nr) ? \
 
 constant_test_bit((nr),(addr)) : \
 
 variable_test_bit((nr),(addr)))
 

	
 
#undef ADDR
 
#if defined(__VMKLNX__)
 
/**
 
 * find_first_zero_bit - find the first zero bit in a memory region
 
 * @addr: The address to start the search at
 
 * @size: The maximum bitnumber to search
 
 *
 
 * Finds the first zero bit in a specified memory region
 
 *
 
 * RETURN VALUE:
 
 * Returns the bit-number of the first zero bit, not the number of the byte
 
 * containing a bit.
 
 * If result is equal to or greater than size means no zero bit is found
 
 */
 
/* _VMKLNX_CODECHECK_: find_first_zero_bit */
 
static __inline__ long 
 
find_first_zero_bit(const unsigned long * addr, unsigned long size)
 
{
 
        long d0, d1, d2;
 
        long res;
 

	
 
        /*
 
         * We must test the size in words, not in bits, because
 
         * otherwise incoming sizes in the range -63..-1 will not run
 
         * any scasq instructions, and then the flags used by the je
 
         * instruction will have whatever random value was in place
 
         * before.  Nobody should call us like that, but
 
         * find_next_zero_bit() does when offset and size are at the
 
         * same word and it fails to find a zero itself.
 
         */
 
        size += 63;
 
        size >>= 6;
 
        if (!size)
 
                return 0;
 

	
 
        vmk_CPUEnsureClearDF();
 
        asm volatile(
 
                "  repe; scasq\n"
 
                "  je 1f\n"
 
                "  xorq -8(%%rdi),%%rax\n"
 
                "  subq $8,%%rdi\n"
 
                "  bsfq %%rax,%%rdx\n"
 
                "1:  subq %[addr],%%rdi\n"
 
                "  shlq $3,%%rdi\n"
 
                "  addq %%rdi,%%rdx"
 
                :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
 
                :"0" (0ULL), "1" (size), "2" (addr), "3" (-1ULL),
 
                 [addr] "S" (addr) : "memory");
 
        /*
 
         * Any register would do for [addr] above, but GCC tends to
 
         * prefer rbx over rsi, even though rsi is readily available
 
         * and doesn't have to be saved.
 
         */
 

	
 
        return res;
 
}
 

	
 
/**
 
 * find_next_zero_bit - find the first zero bit in a memory region
 
 * @addr: The address to base the search on
 
 * @offset: The bitnumber to start searching at
 
 * @size: The maximum size to search
 
 *
 
 * Finds the first zero bit in a specified memory region
 
 *
 
 * RETURN VALUE:
 
 * Returns the bit-number of the first zero bit in a memory region after the 
 
 * specified offset
 
 * If result is equal to or greater than size means no zero bit is found
 
 */
 
/* _VMKLNX_CODECHECK_: find_next_zero_bit */
 
static __inline__ long 
 
find_next_zero_bit (const unsigned long * addr, long size, long offset)
 
{
 
        const unsigned long * p = addr + (offset >> 6);
 
        unsigned long set = 0;
 
        unsigned long res, bit = offset&63;
 

	
 
        if (bit) {
 

	
 
                /*
 
                 * Look for zero in first word
 
                 */
 
                asm("bsfq %1,%0\n\t"
 
                    "cmoveq %2,%0"
 
                    : "=r" (set)
 
                    : "r" (~(*p >> bit)), "r"(64L));
 
                if (set < (64 - bit))
 
                        return set + offset;
 
                set = 64 - bit;
 
                p++;
 
        }
 

	
 
        /*
 
         * No zero yet, search remaining full words for a zero
 
         */
 
        res = find_first_zero_bit (p, size - 64 * (p - addr));
 

	
 
        return (offset + set + res);
 
}
 

	
 
/**
 
 * find_first_bit - find the first set bit in a memory region
 
 * @addr: The address to start the search at
 
 * @size: The maximum size to search
 
 *
 
 * Finds the first set bit in a specified memory region
 
 *
 
 * RETURN VALUE:
 
 * Returns the bit-number of the first set bit, not the number of the byte
 
 * containing a bit.
 
 *
 
 */
 
/* _VMKLNX_CODECHECK_: find_first_bit */
 
static __inline__ long find_first_bit(const unsigned long * addr, unsigned long size)
 
{
 
	long d0, d1;
 
	long res;
 

	
 
	/*
 
	 * We must test the size in words, not in bits, because
 
	 * otherwise incoming sizes in the range -63..-1 will not run
 
	 * any scasq instructions, and then the flags used by the jz
 
	 * instruction will have whatever random value was in place
 
	 * before.  Nobody should call us like that, but
 
	 * find_next_bit() does when offset and size are at the same
 
	 * word and it fails to find a one itself.
 
	 */
 
	size += 63;
 
	size >>= 6;
 
	if (!size)
 
		return 0;
 

	
 
	vmk_CPUEnsureClearDF();
 
	asm volatile(
 
                "   repe; scasq\n"
 
		"   jz 1f\n"
 
		"   subq $8,%%rdi\n"
 
		"   bsfq (%%rdi),%%rax\n"
 
		"1: subq %[addr],%%rdi\n"
 
		"   shlq $3,%%rdi\n"
 
		"   addq %%rdi,%%rax"
 
		:"=a" (res), "=&c" (d0), "=&D" (d1)
 
		:"0" (0ULL), "1" (size), "2" (addr),
 
		 [addr] "r" (addr) : "memory");
 
	return res;
 
}
 

	
 
/**
 
 * find_next_bit - find the first set bit in a memory region
 
 * @addr: The address to base the search on
 
 * @size: The maximum size to search
 
 * @offset: The bitnumber to start searching at
 
 *
 
 * Finds the first set bit in a specified memory region
 
 *
 
 * RETURN VALUE:
 
 * Position of the first set bit in the specified memory, starting from offset.
 
 * If none is found, the full word, starting from addr, is searched.
 
 */
 
/* _VMKLNX_CODECHECK_: find_next_bit */
 
static __inline__ long find_next_bit(const unsigned long * addr, long size, long offset)
 
{
 
	const unsigned long * p = addr + (offset >> 6);
 
	unsigned long set = 0, bit = offset & 63, res;
 

	
 
	if (bit) {
 
		/*
 
		 * Look for nonzero in the first 64 bits:
 
		 */
 
		asm("bsfq %1,%0\n\t"
 
		    "cmoveq %2,%0\n\t"
 
		    : "=r" (set)
 
		    : "r" (*p >> bit), "r" (64L));
 
		if (set < (64 - bit))
 
			return set + offset;
 
		set = 64 - bit;
 
		p++;
 
	}
 
	/*
 
	 * No set bit yet, search remaining full words for a bit
 
	 */
 
	res = find_first_bit (p, size - 64 * (p - addr));
 
	return (offset + set + res);
 
}
 

	
 

	
 
#else /* !defined(__VMKLNX__) */
 
extern long find_first_zero_bit(const unsigned long * addr, unsigned long size);
 
extern long find_next_zero_bit (const unsigned long * addr, long size, long offset);
 
extern long find_first_bit(const unsigned long * addr, unsigned long size);
 
extern long find_next_bit(const unsigned long * addr, long size, long offset);
 
#endif /* defined(__VMKLNX__) */
 

	
 
/**                                          
 
 * __scanbit - searches unsigned long value for the least significant set bit 
 
 * @val: The unsigned long value to scan for the set bit
 
 * @max: The value to return if no set bit found
 
 *
 
 * Finds the least significant set bit in specified unsigned long value
 
 *
 
 * RETURN VALUE:
 
 * Index of first bit set in val or max when no bit is set
 
 */                                          
 
/* _VMKLNX_CODECHECK_: __scanbit */
 
static inline unsigned long __scanbit(unsigned long val, unsigned long max)
 
{
 
	asm("bsfq %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max));
 
	return val;
 
}
 

	
 
#define find_first_bit(addr,size) \
 
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
 
  (__scanbit(*(unsigned long *)addr,(size))) : \
 
  find_first_bit(addr,size)))
 

	
 
#define find_next_bit(addr,size,off) \
 
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? 	  \
 
  ((off) + (__scanbit((*(unsigned long *)addr) >> (off),(size)-(off)))) : \
 
	find_next_bit(addr,size,off)))
 

	
 
#define find_first_zero_bit(addr,size) \
 
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
 
  (__scanbit(~*(unsigned long *)addr,(size))) : \
 
  	find_first_zero_bit(addr,size)))
 
	
 
#define find_next_zero_bit(addr,size,off) \
 
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? 	  \
 
  ((off)+(__scanbit(~(((*(unsigned long *)addr)) >> (off)),(size)-(off)))) : \
 
	find_next_zero_bit(addr,size,off)))
 

	
 
/* 
 
 * Find string of zero bits in a bitmap. -1 when not found.
 
 */ 
 
extern unsigned long 
 
find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len);
 

	
 
static inline void set_bit_string(unsigned long *bitmap, unsigned long i, 
 
				  int len) 
 
{ 
 
	unsigned long end = i + len; 
 
	while (i < end) {
 
		__set_bit(i, bitmap); 
 
		i++;
 
	}
 
} 
 

	
 
static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i, 
 
				    int len) 
 
{ 
 
	unsigned long end = i + len; 
 
	while (i < end) {
 
		__clear_bit(i, bitmap); 
 
		i++;
 
	}
 
} 
 

	
 
/**
 
 * ffz - find first zero in word.
 
 * @word: The word to search
 
 *
 
 * Undefined if no zero exists, so code should check against ~0UL first.
 
 *
 
 * RETURN VALUE:
 
 * Position of the first zero in the word 
 
 */
 
/* _VMKLNX_CODECHECK_: ffz */
 
static __inline__ unsigned long ffz(unsigned long word)
 
{
 
	__asm__("bsfq %1,%0"
 
		:"=r" (word)
 
		:"r" (~word));
 
	return word;
 
}
 

	
 
/**
 
 * __ffs - find first set bit in word
 
 * @word: The word to search
 
 *
 
 * Undefined if no bit is set, so code should check against 0 first.
 
 *
 
 * RETURN VALUE:
 
 * Position of the first set bit in the word 
 
 */
 
/* _VMKLNX_CODECHECK_: __ffs */
 
static __inline__ unsigned long __ffs(unsigned long word)
 
{
 
	__asm__("bsfq %1,%0"
 
		:"=r" (word)
 
		:"rm" (word));
 
	return word;
 
}
 

	
 
/*
 
 * __fls: find last bit set.
 
 * @word: The word to search
 
 *
 
 * Undefined if no zero exists, so code should check against ~0UL first.
 
 */
 
static __inline__ unsigned long __fls(unsigned long word)
 
{
 
	__asm__("bsrq %1,%0"
 
		:"=r" (word)
 
		:"rm" (word));
 
	return word;
 
}
 

	
 
#ifdef __KERNEL__
 

	
 
#include <asm-generic/bitops/sched.h>
 

	
 
/**
 
 * ffs - find first bit set
 
 * @x: the word to search
 
 *
 
 * Finds the first bit set in the referenced word
 
 *
 
 * RETURN VALUE:
 
 * Position of the first set bit
 
 */
 
/* _VMKLNX_CODECHECK_: ffs */
 
static __inline__ int ffs(int x)
 
{
 
	int r;
 

	
 
	__asm__("bsfl %1,%0\n\t"
 
		"cmovzl %2,%0" 
 
		: "=r" (r) : "rm" (x), "r" (-1));
 
	return r+1;
 
}
 

	
 
/**
 
 * fls64 - find last bit set in 64 bit word
 
 * @x: the word to search
 
 *
 
 * This is defined the same way as fls.
 
 */
 
static __inline__ int fls64(__u64 x)
 
{
 
	if (x == 0)
 
		return 0;
 
	return __fls(x) + 1;
 
}
 

	
 
/**
 
 * fls - find last bit set
 
 * @x: the word to search
 
 *
 
 * Finds last bit set in the specified word
 
 * 
 
 * RETURN VALUE:
 
 * The last set bit in specified word
 
 */
 
/* _VMKLNX_CODECHECK_: fls */
 
static __inline__ int fls(int x)
 
{
 
	int r;
 

	
 
	__asm__("bsrl %1,%0\n\t"
 
		"cmovzl %2,%0"
 
		: "=&r" (r) : "rm" (x), "rm" (-1));
 
	return r+1;
 
}
 

	
 
#include <asm-generic/bitops/hweight.h>
 

	
 
#endif /* __KERNEL__ */
 

	
 
#ifdef __KERNEL__
 

	
 
#include <asm-generic/bitops/ext2-non-atomic.h>
 

	
 
#define ext2_set_bit_atomic(lock,nr,addr) \
 
	        test_and_set_bit((nr),(unsigned long*)addr)
 
#define ext2_clear_bit_atomic(lock,nr,addr) \
 
	        test_and_clear_bit((nr),(unsigned long*)addr)
 

	
 
#include <asm-generic/bitops/minix.h>
 

	
 
#endif /* __KERNEL__ */
 

	
 
#endif /* _X86_64_BITOPS_H */