
Detailed Study and Analysis of the GPL and
LGPL

Stanford University, Stanford, CA, USA

Tuesday, 24 August 2004

Bradley M. Kuhn

Executive Director
Free Software Foundation

Daniel Ravicher

Senior Counsel

Free Software Foundation

President and Executive Director

Public Patent Foundation

Copyright c© 2003, 2004 Free Software Foundation, Inc.

Verbatim copying and distribution of this entire document is permitted in
any medium, provided this notice is preserved.

Detailed Study and Analysis

of the GPL and LGPL

Stanford University, Stanford, CA, 24 August 2004

09:00 - 09:25 Registration / Check-in / Continental Breakfast

09:25 - 09:30 Welcome

09:30 - 10:00 Free Software Principles and the Free Software Definition
Bradley M. Kuhn

10:00 - 10:10 Preamble of the GNU General Public License (GPL)
Bradley M. Kuhn

10:10 - 10:35 GPL, §0: Definitions, etc.
Bradley M. Kuhn

10:35 - 10:50 GPL, §1: Grant for Verbatim Source Copying
Bradley M. Kuhn

10:50 - 11:00 Q & A

11:00 - 11:10 Break

11:10 - 11:55 Derivative Works: Statute and Case Law
Daniel Ravicher

i

11:55 - 12:20 GPL, §2: Grants for Source Derivative Works
Bradley M. Kuhn

12:20 - 12:30 Q & A

12:30 - 14:00 Lunch with Lecture ”Patents and Free Software”
Prof. Eben Moglen

14:00 - 14:20 GPL, §3 Grants for Creating Binary Derivative Works
Bradley M. Kuhn

14:20 - 14:40 The Implied Patent Grant in the GPL
Daniel Ravicher

14:40 - 15:25 GPL, §4: Termination of License
GPL, §5: Acceptance of License
GPL, §6: Prohibition on Further Restrictions
GPL, §7: Conflicts with other Agreements or Orders
GPL, §8: International Licensing Issues
GPL, §10: Copyright Holder’s Exceptions to the GPL
Bradley M. Kuhn

15:25 - 15:35 GPL, §11: Disclaimer of Warranties
GPL, §12: Limitation of Liability
Daniel Ravicher

15:35 - 15:45 Q & A

15:45 - 16:00 Break

16:00 - 17:30 GNU Lesser General Public License (LGPL)
Bradley M. Kuhn

17:30 - 18:00 Q & A

ii

Preface

This one-day course gives a section-by-section explanation of the most pop-
ular Free Software copyright license, the GNU General Public License (GNU
GPL), and teaches lawyers, software developers, managers and business peo-
ple how to use the GPL (and GPL’d software) successfully in a new Free
Software business and in existing, successful enterprises.

Attendees should have a general familiarity with software development
processes. A vague understanding of how copyright law applies to software is
also helpful. The tutorial is of most interest to lawyers, software developers
and managers who run software businesses that modify and/or redistribute
software under terms of the GNU GPL (or who wish to do so in the fu-
ture), and those who wish to make use of existing GPL’d software in their
enterprise.

Upon completion of the tutorial, successful attendees can expect to have
learned the following:

• The freedom-defending purpose of each term of the GNU GPL

• The redistribution options under the GPL

• The obligations when modifying GPL’d software

• How to build a plan for proper and successful compliance with the
GPL

• The business advantages that the GPL provides

• The most common business models used in conjunction with the GPL

• How existing GPL’d software can be used in existing enterprises

• The basics of the LGPL and how it differs from the GPL

• How best to understand the complexities regarding derivative works
of software

iii

These course materials are merely a summary of the highlights of the
course presented. Please be aware that during the actual GPL course, class
discussion supplements this printed curriculum. Simply reading it is not
equivalent to attending the course.

iv

Contents

1 What Is Free Software? 1

1.1 The Free Software Definition 1

1.1.1 The Freedom to Run 2

1.1.2 The Freedom to Change and Modify 3

1.1.3 The Freedom to Copy and Share 3

1.1.4 The Freedom to Share Improvements 4

1.2 How Does Software Become Free? 5

1.2.1 Public Domain Software 6

1.2.2 Why Copyright Free Software? 6

1.3 An Ecosystem of Equality . 8

1.3.1 The Noncommercial Ecosystem 8

1.3.2 The Commercial Ecosystem 8

1.3.3 Law Analogy . 9

2 Running Software and Verbatim Copying 13

2.1 GPL §0: Freedom to Run . 13

2.2 GPL §1: Verbatim Copying 14

3 Derivative Works: Statute and Case Law 17

3.1 The Copyright Act . 18

3.2 Abstraction, Filtration, Comparison Test 19

3.2.1 Abstraction . 20

3.2.2 Filtration . 20

3.2.3 Comparison . 22

3.3 Analytic Dissection Test . 22

3.4 No Protection for “Methods of Operation” 23

3.5 No Test Yet Adopted . 23

3.6 Cases Applying Software Derivative Work Analysis 23

v

4 Modified Source and Binary Distribution 25

4.1 GPL §2: Share and Share Alike 25

4.2 GPL §3: Producing Binaries 28

5 The Implied Patent Grant in GPL 33

6 Defending Freedom on Many Fronts 37

6.1 GPL §4: Termination on Violation 37

6.2 GPL §5: Acceptance, Copyright Style 38

6.3 GPL §6: GPL, My One and Only 39

6.4 GPL §7: “Give Software Liberty or Give It Death!” 40

6.5 GPL §8: Excluding Unfreedonia 40

7 Odds, Ends, and Absolutely No Warranty 43

7.1 GPL §9: FSF as Stewards of GPL 43

7.2 GPL §10: Relicensing Permitted 43

7.3 GPL §11: No Warranty . 44

7.4 GPL, §12: Limitation of Liability 44

8 The Lesser GPL 45

8.1 The First LGPL’d Program 45

8.2 What’s the Same? . 47

8.3 Additions to the Preamble . 48

8.4 A Work that Uses the Library 49

8.5 A Work Based on the Library 51

8.6 Subtleties in Works that Use the Library 52

8.7 LGPL §6: Distributing Works that Use the Library 53

8.8 Distribution of Works Based on the Library 54

8.9 And the Rest . 54

9 Integrating the GPL into Business Practices 57

9.1 Using GPL’d Software In-House 57

9.2 Business Models . 57

9.3 Ongoing Compliance . 59

The GNU General Public License 61

The GNU Lesser General Public License 71

vi

Chapter 1

What Is Free Software?

Consideration of the GNU General Public License (herein, abbreviated as
GNU GPL or just GPL) must begin by first considering the broader world
of Free Software. The GPL was not created from a void, rather, it was
created to embody and defend a set of principles that were set forth at the
founding of the GNU project and the Free Software Foundation (FSF)—the
organization that upholds, defends and promotes the philosophy of software
freedom. A prerequisite for understanding the GPL and its terms and con-
ditions is a basic understanding of the principles behind it. The GPL is
unlike almost all other software licenses in that it is designed to defend and
uphold these principles.

1.1 The Free Software Definition

The Free Software Definition is set forth in full on FSF’s Web site at
http://www.fsf.org/ philosophy/free-sw.html. This section presents
an abbreviated version that will focus on the parts that are most pertinent
to the terms of the GPL.

A particular program is Free Software if it grants a particular user of
that program, the following freedoms:

• The freedom to run the program for any purpose

• The freedom to change and modify the program

• The freedom to copy and share the program

• The freedom to share improved versions of the program

1

The focus on “a particular user” is very pertinent here. It is not uncom-
mon for the same version of a specific program to grant these freedoms to
some subset of its user base, while others have none or only some of these
freedoms. Section 9.2 talks in detail about how this can happen even if a
program is released under the GPL.

Some people refer to software that gives these freedoms as “Open Source.”
Besides having a different political focus than those who call it Free Soft-
ware,1 those who call the software “Open Source” are focused on a side
issue. User access to the source code of a program is a prerequisite to make
use of the freedom to modify. However, the important issue is what free-
doms are granted in the license of that source code. Microsoft’s “Shared
Source” program, for example, gives various types of access to source code,
but almost none of the freedoms described in this section.

One key issue central to these freedoms is that there are no restrictions
on how these freedoms can be exercised. Specifically, users and programmers
can exercise these freedoms noncommercially or commercially. Licenses that
grant these freedoms for noncommercial activities but prohibit them for
commercial activities are considered non-Free.

In general, software for which most or all of these freedoms are restricted
in any way is called “non-Free Software.” Typically, the term “proprietary
software” is used more or less interchangeably with “non-Free Software.”
Personally, I tend to use the term “non-Free Software” to refer to noncom-
mercial software that restricts freedom (such as “shareware”) and “propri-
etary software” to refer to commercial software that restricts freedom (such
as nearly all of Microsoft’s and Oracle’s offerings).

The remainder of this section considers each of the four freedoms in
detail.

1.1.1 The Freedom to Run

For a program to be Free Software, the freedom to run the program must be
completely unrestricted. This means any use for software the user can come
up with must be permitted. Perhaps, for example, the user has discovered
an innovative use for a particular program, one that the programmer never
could have predicted. Such a use must not be restricted.

It was once rare that this freedom was restricted by even proprietary
software; today it is not so rare. Most End User Licensing Agreements

1The political differences between the Free Software Movement and

the Open Source Movement are documented on FSF’s Web site at

http://www.fsf.org/philosophy/free-software-for-freedom.html.

2

(EULAs) that cover most proprietary software restrict some types of use. For
example, some versions of Microsoft’s FrontPage software prohibit use of the
software to create Web sites that generate negative publicity for Microsoft.
Free Software has no such restrictions; everyone is free to use Free Software
for any purpose whatsoever.

1.1.2 The Freedom to Change and Modify

Free Software programs allow users to change, modify and adapt the software
to suit their needs. Access to the source code and related build scripts are
an essential part of this freedom. Without the source code and the ability
to build the binary applications from that source, the freedom cannot be
properly exercised.

Programmers can take direct benefit from this freedom, and often do.
However, this freedom is also important to users who are not program-
mers. Users must have the right to exercise this freedom indirectly in both
commercial and noncommercial settings. For example, users often seek non-
commercial help with the software on email lists and in users groups. When
they find such help, they must have the freedom to recruit programmers
who might altruistically assist them to modify their software.

The commercial exercise of this freedom is also essential for users. Each
user, or group of users, must have the right to hire anyone they wish in a
competitive free market to modify and change the software. This means
that companies have a right to hire anyone they wish to modify their Free
Software. Additionally, such companies may contract with other companies
to commission software modification.

1.1.3 The Freedom to Copy and Share

Users may share Free Software in a variety of ways. Free Software advo-
cates work to eliminate a fundamental ethical dilemma of the software age:
choosing between obeying a software license, and friendship (by giving away
a copy of a program to your friend who likes the software you are using).
Free Software licenses, therefore, must permit this sort of altruistic sharing
of software among friends.

The commercial environment must also have the benefits of this free-
dom. Commercial sharing typically takes the form of selling copies of Free
Software. Free Software can be sold at any price to anyone. Those who
redistribute Free Software commercially have the freedom to selectively dis-
tribute (you can pick your customers) and to set prices at any level the

3

redistributor sees fit.

It is true that many people get copies of Free Software very cheaply (and
sometimes without charge). The competitive free market of Free Software
tends to keep prices low and reasonable. However, if someone is willing to
pay a billion dollars for one copy of the GNU Compiler Collection, such a
sale is completely permitted.

Another common instance of commercial sharing is service-oriented dis-
tribution. For example, a distribution vendor may provide immediate secu-
rity and upgrade distribution via a special network service. Such distribution
is completely permitted for Free Software.

(Section 9.2 of this tutorial talks in detail about various Free Software
business models that take advantage of the freedom to share commercially.)

1.1.4 The Freedom to Share Improvements

The freedom to modify and improve is somewhat empty without the free-
dom to share those improvements. The Free Software community is built
on the pillar of altruistic sharing of improved Free Software. Inevitably, a
Free Software project sprouts a mailing list where improvements are shared
freely among members of the development community. Such noncommercial
sharing must be permitted for Free Software to thrive.

Commercial sharing of modified Free Software is equally important. For
commercial support to exist in a competitive free market, all developers —
from single-person contractors to large software companies — must have the
freedom to market their services as improvers of Free Software. All forms of
such service marketing must be equally available to all.

For example, selling support services for Free Software is fully permit-
ted. Companies and individuals can offer themselves as “the place to call”
when software fails or does not function properly. For such a service to be
meaningful, the entity offering that service must have the right to modify
and improve the software for the customer to correct any problems that are
beyond mere user error.

Entities must also be permitted to make available modified versions of
Free Software. Most Free Software programs have a “standard version”
that is made available from the primary developers of the software. How-
ever, all who have the software have the “freedom to fork” — that is, make
available nontrivial modified versions of the software on a permanent or
semi-permanent basis. Such freedom is central to vibrant developer and
user interaction.

4

Companies and individuals have the right to make true value-added ver-
sions of Free Software. They may use freedom to share improvements to dis-
tribute distinct versions of Free Software with different functionality and fea-
tures. Furthermore, this freedom can be exercised to serve a disenfranchised
subset of the user community. If the developers of the standard version
refuse to serve the needs of some of the software’s users, other entities have
the right to create a long- or short-lived fork to serve that sub-community.

1.2 How Does Software Become Free?

The last section set forth the freedoms and rights respected by Free Software.
It presupposed, however, that such software exists. This section discusses
how Free Software comes into existence. But first, it addresses how software
can be non-Free in the first place.

Software can be made proprietary only because it is governed by copy-
right law.2 Copyright law, with respect to software, governs copying, modi-
fying, and redistributing that software.3 By law, the copyright holder (a.k.a.
the author) of the work controls how others may copy, modify and/or dis-
tribute the work. For proprietary software, these controls are used to pro-
hibit these activities. In addition, proprietary software distributors further
impede modification in a practical sense by distributing only binary code
and keeping the source code of the software secret.

Copyright law is a construction. In the USA, the Constitution permits,
but does not require, the creation of copyright law as federal legislation.
Software, since it is an idea fixed in a tangible medium, is thus covered by
the statues, and is copyrighted by default.

However, this legal construction is not necessarily natural. Software, in
its natural state without copyright, is Free Software. In an imaginary world
with no copyright, the rules would be different. In this world, when you
received a copy of a program’s source code, there would be no default legal
system to restrict you from sharing it with others, making modifications, or

2This statement is a bit of an oversimplification. Patents and trade secrets can cover

software and make it effectively non-Free, one can contract away their rights and freedoms

regarding software, or source code can be practically obscured in binary-only distribution

without reliance on any legal system. However, the primary control mechanism for soft-

ware is copyright.
3Copyright law in general also governs “public performance” of copyrighted works.

There is no generally agreed definition for public performance of software and version 2

of the GPL does not govern public performance.

5

redistributing those modified versions.4

Software in the real world is copyrighted by default and is automatically
covered by that legal system. However, it is possible to move software out of
the domain of the copyright system. A copyright holder is always permitted
to disclaim their copyright. If copyright is disclaimed, the software is not
governed by copyright law. Software not governed by copyright is in the
“public domain.”

1.2.1 Public Domain Software

An author can create public domain software by disclaiming all copyright
interest on the work. In the USA and other countries that have signed the
Berne convention on copyright, software is copyrighted automatically by the
author when she “fixes the software into a tangible medium.” In the software
world, this usually means typing the source code of the software into a file.

However, an author can disclaim that default control given to her by the
copyright laws. Once this is done, the software is in the public domain —
it is no longer covered by copyright. Since it is copyright law that allows
for various controls on software (i.e., prohibition of copying, modification,
and redistribution), removing the software from the copyright system and
placing it into the public domain does yield Free Software.

Carefully note that software in the public domain is not licensed in any
way. It is nonsensical to say software is “licensed for the public domain,” or
any phrase that implies the copyright holder gave expressed permission to
take actions governed by copyright law.

By contrast, what the copyright holder has done is renounce her copy-
right controls on the work. The law gave her controls over the work, and
she has chosen to waive those controls. Software in the public domain is
absent copyright and absent a license. The software freedoms discussed in
Section 1.1 are all granted because there is no legal system in play to take
them away.

1.2.2 Why Copyright Free Software?

If simply disclaiming copyright on software yields Free Software, then it
stands to reason that putting software into the public domain is the easiest
and most straightforward way to produce Free Software. Indeed, some major
Free Software projects have chosen this method for making their software

4There could still exist legal systems, like our modern patent system, which could

restrict the software in other ways.

6

Free. However, most of the Free Software in existence is copyrighted. In
most cases (particularly in those of FSF and the GNU Project), this was
done due to very careful planning.

Software released into the public domain does grant freedom to those
users who receive the standard versions on which the original author dis-
claimed copyright. However, since the work is not copyrighted, any nontriv-
ial modification made to the work is fully copyrightable.

Free Software released into the public domain initially is Free, and per-
haps some who modify the software choose to place their work into the public
domain as well. However, over time, some entities will choose to proprieta-
rize their modified versions. The public domain body of software feeds the
proprietary software. The public commons disappears, because fewer and
fewer entities have an incentive to contribute back to the commons. They
know that any of their competitors can proprietarize their enhancements.
Over time, almost no interesting work is left in the public domain, because
nearly all new work is done by proprietarization.

A legal mechanism is needed to redress this problem. FSF was in fact
originally created primarily as a legal entity to defend software freedom,
and that work of defending software freedom is a substantial part of its
work today. Specifically because of this “embrace, proprietarize and extend”
cycle, FSF made a conscious choice to copyright its Free Software, and then
license it under “copyleft” terms. Many, including the developers of the
kernel named Linux, have chosen to follow this paradigm.

Copyleft is a legal strategy to defend, uphold and propagate software
freedom. The basic technique of copyleft is as follows: copyright the soft-
ware, license it under terms that give all the software freedoms, but use the
copyright law controls to ensure that all who receive a copy of the software
have equal rights and freedom. In essence, copyleft grants freedom, but for-
bids others to forbid that freedom to anyone else along the distribution and
modification chains.

Copyleft is a general concept. Much like ideas for what a computer
might do must be implemented by a program that actually does the job, so
too must copyleft be implemented in some concrete legal structure. “Share
and share alike” is a phrase that is used often enough to explain the concept
behind copyleft, but to actually make it work in the real world, a true imple-
mentation in legal text must exist. The GPL is the primary implementation
of copyleft in copyright licensing language.

7

1.3 An Ecosystem of Equality

The GPL uses copyright law to defend freedom and equally ensure users’
rights. This ultimately creates an ecosystem of equality for both business
and noncommercial users.

1.3.1 The Noncommercial Ecosystem

A GPL’d code base becomes a center of a vibrant development and user
community. Traditionally, volunteers, operating noncommercially out of
keen interest or “scratch an itch” motivations, produce initial versions of a
GPL’d system. Because of the efficient distribution channels of the Internet,
any useful GPL’d system is adopted quickly by noncommercial users.

Fundamentally, the early release and quick distribution of the software
gives birth to a thriving noncommercial community. Users and developers
begin sharing bug reports and bug fixes across a shared intellectual com-
mons. Users can trust the developers, because they know that if the devel-
opers fail to address their needs or abandon the project, the GPL ensures
that someone else has the right to pick up development. Developers know
that the users cannot redistribute their software without passing along the
rights granted by GPL, so they are assured that every one of their users is
treated equally.

Because of the symmetry and fairness inherent in GPL’d distribution,
nearly every GPL’d package in existence has a vibrant noncommercial user
and developer base.

1.3.2 The Commercial Ecosystem

By the same token, nearly all established GPL’d software systems have a
vibrant commercial community. Nearly every GPL’d system that has gained
wide adoption from noncommercial users and developers eventually begins
to fuel a commercial system around that software.

For example, consider the Samba file server system that allows Unix-like
systems (including GNU/Linux) to serve files to Microsoft Windows systems.
Two graduate students originally developed Samba in their spare time and
it was deployed noncommercially in academic environments. However, very
soon for-profit companies discovered that the software could work for them
as well, and their system administrators began to use it in place of Microsoft
Windows NT file-servers. This served to lower the cost of running such
servers by orders of magnitude. There was suddenly room in Windows file-

8

server budgets to hire contractors to improve Samba. Some of the first
people hired to do such work were those same two graduate students who
originally developed the software.

The noncommercial users, however, were not concerned when these two
fellows began collecting paychecks off of their GPL’d work. They knew that
because of the nature of the GPL that improvements that were distributed
in the commercial environment could easily be folded back into the standard
version. Companies are not permitted to proprietarize Samba, so the non-
commercial users, and even other commercial users are safe in the knowledge
that the software freedom ensured by GPL will remain protected.

Commercial developers also work in concert with noncommercial devel-
opers. Those two now-long-since graduated students continue to contribute
to Samba altruistically, but also get paid work doing it. Priorities change
when a client is in the mix, but all the code is contributed back to the
standard version. Meanwhile, many other individuals have gotten involved
noncommercially as developers, because they want to “cut their teeth on
Free Software,” or because the problems interest them. When they get
good at it, perhaps they will move on to another project, or perhaps they
will become commercial developers of the software themselves.

No party is a threat to another in the GPL software scenario because
everyone is on equal ground. The GPL protects rights of the commercial
and noncommercial contributors and users equally. The GPL creates trust,
because it is a level playing field for all.

1.3.3 Law Analogy

In his introduction to Stallman’s Free Software, Free Society, Lawrence
Lessig draws an interesting analogy between the law and Free Software.
He argues that the laws of a free society must be protected much like the
GPL protects software. So that I might do true justice to Lessig’s argument,
I quote it verbatim:

A “free society” is regulated by law. But there are limits that
any free society places on this regulation through law: No society
that kept its laws secret could ever be called free. No government
that hid its regulations from the regulated could ever stand in
our tradition. Law controls. But it does so justly only when
visibly. And law is visible only when its terms are knowable and
controllable by those it regulates, or by the agents of those it
regulates (lawyers, legislatures).

9

This condition on law extends beyond the work of a legis-
lature. Think about the practice of law in American courts.
Lawyers are hired by their clients to advance their clients’ inter-
ests. Sometimes that interest is advanced through litigation. In
the course of this litigation, lawyers write briefs. These briefs
in turn affect opinions written by judges. These opinions decide
who wins a particular case, or whether a certain law can stand
consistently with a constitution.

All the material in this process is free in the sense that Stall-
man means. Legal briefs are open and free for others to use. The
arguments are transparent (which is different from saying they
are good), and the reasoning can be taken without the permis-
sion of the original lawyers. The opinions they produce can be
quoted in later briefs. They can be copied and integrated into
another brief or opinion. The “source code” for American law
is by design, and by principle, open and free for anyone to take.
And take lawyers do—for it is a measure of a great brief that it
achieves its creativity through the reuse of what happened be-
fore. The source is free; creativity and an economy is built upon
it.

This economy of free code (and here I mean free legal code)
doesn’t starve lawyers. Law firms have enough incentive to pro-
duce great briefs even though the stuff they build can be taken
and copied by anyone else. The lawyer is a craftsman; his or
her product is public. Yet the crafting is not charity. Lawyers
get paid; the public doesn’t demand such work without price.
Instead this economy flourishes, with later work added to the
earlier.

We could imagine a legal practice that was different—briefs
and arguments that were kept secret; rulings that announced a
result but not the reasoning. Laws that were kept by the police
but published to no one else. Regulation that operated without
explaining its rule.

We could imagine this society, but we could not imagine call-
ing it “free.” Whether or not the incentives in such a society
would be better or more efficiently allocated, such a society could
not be known as free. The ideals of freedom, of life within a free
society, demand more than efficient application. Instead, open-
ness and transparency are the constraints within which a legal
system gets built, not options to be added if convenient to the

10

leaders. Life governed by software code should be no less.
Code writing is not litigation. It is better, richer, more pro-

ductive. But the law is an obvious instance of how creativity and
incentives do not depend upon perfect control over the products
created. Like jazz, or novels, or architecture, the law gets built
upon the work that went before. This adding and changing is
what creativity always is. And a free society is one that assures
that its most important resources remain free in just this sense.5

In essence, lawyers are paid to service the shared commons of legal in-
frastructure. Few citizens defend themselves in court or write their own
briefs (even though they are legally permitted to do so) because everyone
would prefer to have an expert do that job.

The Free Software economy is a market ripe for experts. It functions
similarly to other well established professional fields like the law. The GPL,
in turn, serves as the legal scaffolding that permits the creation of this
vibrant commercial and noncommercial Free Software economy.

5This quotation is Copyright c© 2002, Lawrence Lessig. It is licensed under the terms

of http://creativecommons.org/licenses/by/1.0/the “Attribution License” version 1.0

or any later version as published by Creative Commons.

11

12

Chapter 2

Running Software and

Verbatim Copying

This chapter begins the deep discussion of the details of the terms of GPL.
In this chapter, we consider the first two sections: GPL §§0–2. These are
the straightforward sections of the GPL that define the simplest rights that
the user receives.

2.1 GPL §0: Freedom to Run

§0, the opening section of GPL, sets forth that the work is governed by
copyright law. It specifically points out that it is the “copyright holder”
who decides if a work is licensed under its terms and explains how the
copyright holder might indicate this fact.

A bit more subtly, §0 makes an inference that copyright law is the only
system under which it is governed. Specifically, it states:

Activities other than copying, distribution and modification are
not covered by this License; they are outside its scope.

In essence, the license governs only those activities, and all other activities
are unrestricted, provided that no other agreements trump GPL (which
they cannot; see Sections 6.3 and 6.4). This is very important, because the
Free Software community heavily supports users’ rights to “fair use” and
“unregulated use” of copyrighted material. GPL asserts through this clause
that it supports users’ rights to fair and unregulated uses.

Fair use of copyrighted material is an established legal doctrine that
permits certain activities. Discussion of the various types of fair use activity

13

are beyond the scope of this tutorial. However, one important example of
fair use is the right to quote a very few lines (less than seven or so) and
reuse them as you would with or without licensing restrictions.

Fair use is a doctrine established by the courts or by statute. By contrast,
unregulated uses are those that are not covered by the statue nor determined
by a court to be covered, but are common and enjoyed by many users. An
example of unregulated use is reading a printout of the program’s source
code like an instruction book for the purpose of learning how to be a better
programmer.

Thus, the GPL protects users fair and unregulated use rights precisely by
not attempting to cover them. Furthermore, the GPL ensures the freedom
to run specifically by stating the following:

”The act of running the Program is not restricted.”

Thus, users are explicitly given the freedom to run by §0.

The bulk of §0 not yet discussed gives definitions for other terms used
throughout. The only one worth discussing in detail is “work based on the
Program.” The reason this definition is particularly interesting is not for
the definition itself, which is rather straightforward, but because it clears
up a common misconception about the GPL.

The GPL is often mistakenly criticized because it fails to give a definition
of “derivative work.” In fact, it would be incorrect and problematic if the
GPL attempted to define this. A copyright license, in fact, has no control
over what may or may not be a derivative work. This matter is left up to
copyright law, not the licenses that utilize it.

It is certainly true that copyright law as a whole does not propose clear
and straightforward guidelines for what is and is not a derivative software
work under copyright law. However, no copyright license — not even the
GNU GPL — can be blamed for this. Legislators and court opinions must
give us guidance to decide the border cases.

2.2 GPL §1: Verbatim Copying

GPL §1 covers the matter of redistributing the source code of a program
exactly as it was received. This section is quite straightforward. However,
there are a few details worth noting here.

The phrase “in any medium” is important. This, for example, gives the
freedom to publish a book that is the printed copy of the program’s source

14

code. It also allows for changes in the medium of distribution. Some vendors
may ship Free Software on a CD, but others may place it right on the hard
drive of a pre-installed computer. Any such redistribution media is allowed.

Preservation of copyright notice and license notifications are mentioned
specifically in §1. These are in some ways the most important part of the
redistribution, which is why they are mentioned by name. The GPL always
strives to make it abundantly clear to anyone who receives the software what
its license is. The goal is to make sure users know their rights and freedoms
under GPL, and to leave no reason that someone would be surprised the
software she got was licensed under GPL. Thus throughout the GPL, there
are specific references to the importance of notifying others down the distri-
bution chain that they have rights under GPL.

Also mentioned by name is the warranty disclaimer. Most people today
do not believe that software comes with any warranty. Notwithstanding the
proposed state-level UCITA bills (which have never obtained widespread
adoption), there are few or no implied warranties with software. However,
just to be on the safe side, GPL clearly disclaims them, and the GPL requires
redistributors to keep the disclaimer very visible. (See Sections 7.3 and 7.4
of this tutorial for more on GPL’s warranty disclaimers.)

Note finally that §1 begins to set forth the important defense of com-
mercial freedom. §1 clearly states that in the case of verbatim copies, one
may make money. Redistributors are fully permitted to charge for the re-
distribution of copies of Free Software. In addition, they may provide the
warranty protection that the GPL disclaims as an additional service for a fee.
(See Section 9.2 for more discussion on making a profit from Free Software
redistribution.)

15

16

Chapter 3

Derivative Works: Statute

and Case Law

We digress for this chapter from our discussion of GPL’s exact text to con-
sider the matter of derivative works — a concept that we must understand
fully before considering §§2–3 of GPL. GPL, and Free Software licensing
in general, relies critically on the concept of “derivative work” since soft-
ware that is “independent,” (i.e., not “derivative”) of Free Software need
not abide by the terms of the applicable Free Software license. As much is
required by §106 of the Copyright Act, 17 U.S.C. §106 (2002), and admitted
by Free Software licenses, such as the GPL, which (as we have seen) states
in §0 that “a ‘work based on the Program’ means either the Program or any
derivative work under copyright law.” It is being a derivative work of Free
Software that triggers the necessity to comply with the terms of the Free
Software license under which the original work is distributed. Therefore, one
is left to ask, just what is a “derivative work”? The answer to that question
differs depending on which court is being asked.

The analysis in this chapter sets forth the differing definitions of deriva-
tive work by the circuit courts. The broadest and most established definition
of derivative work for software is the abstraction, filtration, and compari-
son test (“the AFC test”) as created and developed by the Second Circuit.
Some circuits, including the Ninth Circuit and the First Circuit, have either
adopted narrower versions of the AFC test or have expressly rejected the
AFC test in favor of a narrower standard. Further, several other circuits
have yet to adopt any definition of derivative work for software.

As an introductory matter, it is important to note that literal copying
of a significant portion of source code is not always sufficient to establish

17

that a second work is a derivative work of an original program. Conversely,
a second work can be a derivative work of an original program even though
absolutely no copying of the literal source code of the original program has
been made. This is the case because copyright protection does not always
extend to all portions of a program’s code, while, at the same time, it can
extend beyond the literal code of a program to its non-literal aspects, such
as its architecture, structure, sequence, organization, operational modules,
and computer-user interface.

3.1 The Copyright Act

The copyright act is of little, if any, help in determining the definition of a
derivative work of software. However, the applicable provisions do provide
some, albeit quite cursory, guidance. Section 101 of the Copyright Act sets
forth the following definitions:

A “computer program” is a set of statements or instructions
to be used directly or indirectly in a computer in order to bring
about a certain result.

A “derivative work” is a work based upon one or more preex-
isting works, such as a translation, musical arrangement, drama-
tization, fictionalization, motion picture version, sound record-
ing, art reproduction, abridgment, condensation, or any other
form in which a work may be recast, transformed, or adapted. A
work consisting of editorial revisions, annotations, elaborations,
or other modifications which, as a whole, represent an original
work of authorship, is a “derivative work.”

These are the only provisions in the Copyright Act relevant to the de-
termination of what constitutes a derivative work of a computer program.
Another provision of the Copyright Act that is also relevant to the definition
of derivative work is §102(b), which reads as follows:

In no case does copyright protection for an original work
of authorship extend to any idea, procedure, process, system,
method of operation, concept, principle, or discovery, regardless
of the form in which it is described, explained, illustrated, or
embodied in such work.

18

Therefore, before a court can ask whether one program is a derivative
work of another program, it must be careful not to extend copyright pro-
tection to any ideas, procedures, processes, systems, methods of operation,
concepts, principles, or discoveries contained in the original program. It
is the implementation of this requirement to “strip out” unprotectable ele-
ments that serves as the most frequent issue over which courts disagree.

3.2 Abstraction, Filtration, Comparison Test

As mentioned above, the AFC test for determining whether a computer pro-
gram is a derivative work of an earlier program was created by the Second
Circuit and has since been adopted in the Fifth, Tenth, and Eleventh Cir-
cuits. Computer Associates Intl., Inc. v. Altai, Inc., 982 F.2d 693 (2nd Cir.
1992); Engineering Dynamics, Inc. v. Structural Software, Inc., 26 F.3d
1335 (5th Cir. 1994); Kepner-Tregoe, Inc. v. Leadership Software, Inc., 12
F.3d 527 (5th Cir. 1994); Gates Rubber Co. v. Bando Chem. Indust., Ltd.,
9 F.3d 823 (10th Cir. 1993); Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366 (10th
Cir. 1997); 5 Bateman v. Mnemonics, Inc., 79 F.3d 1532 (11th Cir. 1996);
and, Mitek Holdings, Inc. v. Arce Engineering Co., Inc., 89 F.3d 1548 (11th
Cir. 1996).

Under the AFC test, a court first abstracts from the original program its
constituent structural parts. Then, the court filters from those structural
parts all unprotectable portions, including incorporated ideas, expression
that is necessarily incidental to those ideas, and elements that are taken
from the public domain. Finally, the court compares any and all remaining
kernels of creative expression to the structure of the second program to
determine whether the software programs at issue are substantially similar
so as to warrant a finding that one is the derivative work of the other.

Often, the courts that apply the AFC test will perform a quick initial
comparison between the entirety of the two programs at issue in order to
help determine whether one is a derivative work of the other. Such a holistic
comparison, although not a substitute for the full application of the AFC
test, sometimes reveals a pattern of copying that is not otherwise obvious
from the application of the AFC test when, as discussed below, only certain
components of the original program are compared to the second program.
If such a pattern is revealed by the quick initial comparison, the court is
more likely to conclude that the second work is indeed a derivative of the
original.

19

3.2.1 Abstraction

The first step courts perform under the AFC test is separation of the work’s
ideas from its expression. In a process akin to reverse engineering, the courts
dissect the original program to isolate each level of abstraction contained
within it. Courts have stated that the abstractions step is particularly well
suited for computer programs because it breaks down software in a way
that mirrors the way it is typically created. However, the courts have also
indicated that this step of the AFC test requires substantial guidance from
experts, because it is extremely fact and situation specific.

By way of example, one set of abstraction levels is, in descending order
of generality, as follows: the main purpose, system architecture, abstract
data types, algorithms and data structures, source code, and object code.
As this set of abstraction levels shows, during the abstraction step of the
AFC test, the literal elements of the computer program, namely the source
and object code, are defined as particular levels of abstraction. Further,
the source and object code elements of a program are not the only elements
capable of forming the basis for a finding that a second work is a derivative
of the program. In some cases, in order to avoid a lengthy factual inquiry by
the court, the owner of the copyright in the original work will submit its own
list of what it believes to be the protected elements of the original program.
In those situations, the court will forgo performing its own abstraction, and
proceed to the second step of the AFC test.

3.2.2 Filtration

The most difficult and controversial part of the AFC test is the second step,
which entails the filtration of protectable expression contained in the original
program from any unprotectable elements nestled therein. In determining
which elements of a program are unprotectable, courts employ a myriad of
rules and procedures to sift from a program all the portions that are not
eligible for copyright protection.

First, as set forth in §102(b) of the Copyright Act, any and all ideas
embodied in the program are to be denied copyright protection. However,
implementing this rule is not as easy as it first appears. The courts readily
recognize the intrinsic difficulty in distinguishing between ideas and expres-
sion and that, given the varying nature of computer programs, doing so will
be done on an ad hoc basis. The first step of the AFC test, the abstraction,
exists precisely to assist in this endeavor by helping the court separate out
all the individual elements of the program so that they can be independently

20

analyzed for their expressive nature.
A second rule applied by the courts in performing the filtration step of

the AFC test is the doctrine of merger, which denies copyright protection to
expression necessarily incidental to the idea being expressed. The reasoning
behind this doctrine is that when there is only one way to express an idea, the
idea and the expression merge, meaning that the expression cannot receive
copyright protection due to the bar on copyright protection extending to
ideas. In applying this doctrine, a court will ask whether the program’s use
of particular code or structure is necessary for the efficient implementation
of a certain function or process. If so, then that particular code or structure
is not protected by copyright and, as a result, it is filtered away from the
remaining protectable expression.

A third rule applied by the courts in performing the filtration step of the
AFC test is the doctrine of scenes a faire, which denies copyright protection
to elements of a computer program that are dictated by external factors.
Such external factors can include:

• The mechanical specifications of the computer on which a particular
program is intended to operate

• Compatibility requirements of other programs with which a program
is designed to operate in conjunction

• Computer manufacturers’ design standards

• Demands of the industry being serviced, and

widely accepted programming practices within the computer industry

Any code or structure of a program that was shaped predominantly in
response to these factors is filtered out and not protected by copyright.
Lastly, elements of a computer program are also to be filtered out if they
were taken from the public domain or fail to have sufficient originality to
merit copyright protection.

Portions of the source or object code of a computer program are rarely fil-
tered out as unprotectable elements. However, some distinct parts of source
and object code have been found unprotectable. For example, constant s,
the invariable integers comprising part of formulas used to perform calcu-
lations in a program, are unprotectable. Further, although common errors
found in two programs can provide strong evidence of copying, they are not
afforded any copyright protection over and above the protection given to the
expression containing them.

21

3.2.3 Comparison

The third and final step of the AFC test entails a comparison of the origi-
nal program’s remaining protectable expression to a second program. The
issue will be whether any of the protected expression is copied in the second
program and, if so, what relative importance the copied portion has with
respect to the original program overall. The ultimate inquiry is whether
there is “substantial” similarity between the protected elements of the origi-
nal program and the potentially derivative work. The courts admit that this
process is primarily qualitative rather than quantitative and is performed on
a case-by-case basis. In essence, the comparison is an ad hoc determination
of whether the protectable elements of the original program that are con-
tained in the second work are significant or important parts of the original
program. If so, then the second work is a derivative work of the first. If,
however, the amount of protectable elements copied in the second work are
so small as to be de minimis, then the second work is not a derivative work
of the original.

3.3 Analytic Dissection Test

The Ninth Circuit has adopted the analytic dissection test to determine
whether one program is a derivative work of another. Apple Computer, Inc.
v. Microsoft Corp., 35 F.3d 1435 (9th Cir. 1994). The analytic dissection
test first considers whether there are substantial similarities in both the
ideas and expressions of the two works at issue. Once the similar features
are identified, analytic dissection is used to determine whether any of those
similar features are protected by copyright. This step is the same as the
filtration step in the AFC test. After identifying the copyrightable simi-
lar features of the works, the court then decides whether those features are
entitled to “broad” or “thin” protection. “Thin” protection is given to non-
copyrightable facts or ideas that are combined in a way that affords copyright
protection only from their alignment and presentation, while “broad” pro-
tection is given to copyrightable expression itself. Depending on the degree
of protection afforded, the court then sets the appropriate standard for a
subjective comparison of the works to determine whether, as a whole, they
are sufficiently similar to support a finding that one is a derivative work of
the other. “Thin” protection requires the second work be virtually identical
in order to be held a derivative work of an original, while “broad” protection
requires only a “substantial similarity.”

22

3.4 No Protection for “Methods of Operation”

The First Circuit expressly rejected the AFC test and, instead, takes a
much narrower view of the meaning of derivative work for software. The
First Circuit holds that “method of operation,” as used in §102(b) of the
Copyright Act, refers to the means by which users operate computers. Lotus
Development Corp. v. Borland Intl., Inc., 49 F.3d 807 (1st Cir. 1995). More
specifically, the court held that a menu command hierarchy for a computer
program was uncopyrightable because it did not merely explain and present
the programs functional capabilities to the user, but also served as a method
by which the program was operated and controlled. As a result, under the
First Circuits test, literal copying of a menu command hierarchy, or any
other “method of operation,” cannot form the basis for a determination
that one work is a derivative of another. It is also reasonable to expect that
the First Circuit will read the unprotectable elements set forth in §102(b)
broadly, and, as such, promulgate a definition of derivative work that is
much narrower than that which exists under the AFC test.

3.5 No Test Yet Adopted

Several circuits, most notably the Fourth and Seventh, have yet to declare
their definition of derivative work and whether or not the AFC, Analytic
Dissection, or some other test best fits their interpretation of copyright law.
Therefore, uncertainty exists with respect to determining the extent to which
a software program is a derivative work of another in those circuits. However,
one may presume that they would give deference to the AFC test since it
is by far the majority rule amongst those circuits that have a standard for
defining a software derivative work.

3.6 Cases Applying Software Derivative Work Anal-

ysis

In the preeminent case regarding the definition of a derivative work for soft-
ware, Computer Associates v. Altai, the plaintiff alleged that its program,
Adapter, which was used to handle the differences in operating system calls
and services, was infringed by the defendant’s competitive program, Oscar.
About 30% of Oscar was literally the same code as that in Adapter. After
the suit began, the defendant rewrote those portions of Oscar that contained

23

Adapter code in order to produce a new version of Oscar that was function-
ally competitive with Adapter, without have any literal copies of its code.
Feeling slighted still, the plaintiff alleged that even the second version of
Oscar, despite having no literally copied code, also infringed its copyrights.
In addressing that question, the Second Circuit promulgated the AFC test.

In abstracting the various levels of the program, the court noted a sim-
ilarity between the two programs’ parameter lists and macros. However,
following the filtration step of the AFC test, only a handful of the lists and
macros were protectable under copyright law because they were either in
the public domain or required by functional demands on the program. With
respect to the handful of parameter lists and macros that did qualify for
copyright protection, after performing the comparison step of the AFC test,
it was reasonable for the district court to conclude that they did not war-
rant a finding of infringement given their relatively minor contribution to
the program as a whole. Likewise, the similarity between the organizational
charts of the two programs was not substantial enough to support a finding
of infringement because they were too simple and obvious to contain any
original expression.

Perhaps not surprisingly, there have been few cases involving a highly
detailed software derivative work analysis. Most often, cases involve clearer
basis for decision, including frequent bad faith on the part of the defendant
or overaggressiveness on the part of the plaintiff. However, no cases involving
Free Software licensing have ever gone to court. As Free Software becomes
an ever-increasingly important part of the economy, it remains to be seen
if battle lines will be drawn over whether particular programs infringe the
rights of Free Software developers or whether the entire community, includ-
ing industry, adopts norms avoiding such risk.

24

Chapter 4

Modified Source and Binary

Distribution

In this chapter, we discuss the two core sections that define the rights and
obligations for those who modify, improve, and/or redistribute GPL’d soft-
ware. These sections, §§2–3, define the central core rights and requirements
of GPL.

4.1 GPL §2: Share and Share Alike

For many, this is where the “magic” happens that defends software freedom
along the distribution chain. §2 is the only place in the GPL that governs
the modification controls of copyright law. If someone modifies a GPL’d
program, she is bound in the making those changes by §2. The goal here
is to ensure that the body of GPL’d software, as it continues and develops,
remains Free as in freedom.

To achieve that goal, §2 first sets forth that the rights of redistribution of
modified versions are the same as those for verbatim copying, as presented
in §1. Therefore, the details of charging, keeping copyright notices intact,
and other §1 provisions are in tact here as well. However, there are three
additional requirements.

The first (§2(a)) requires that modified files carry “prominent notices”
explaining what changes were made and the date of such changes. The
goal here is not to put forward some specific way of marking changes nor
controlling the process of how changes get made. Primarily, §2(a) seeks to
ensure that those receiving modified versions know the history of changes
to the software. For some users, it is important to know that they are using

25

the standard version of program, because while there are many advantages
to using a fork, there are a few disadvantages. Users should be informed
about the historical context of the software version they use, so that they can
make proper support choices. Finally, §2(a) serves an academic purpose —
ensuring that future developers can use a diachronic approach to understand
the software.

The second requirement (§2(b)) contains the four short lines that embody
the legal details of “share and share alike.” These 46 words are considered
by some to be the most worthy of careful scrutiny because §2(b) can be a
source of great confusion when not properly understood.

In considering §2(b), first note the qualifier: it only applies to derivative
works that “you distribute or publish.” Despite years of education efforts
by FSF on this matter, many still believe that modifiers of GPL’d software
are required by the license to publish or otherwise share their changes. On
the contrary, §2(b) does not apply if the changes are never distributed.
Indeed, the freedom to make private, personal, unshared changes to software
for personal use only should be protected and defended.1

Next, we again encounter the same matter that appears in §0, in the
following text:

“...that in whole or part contains or is derived from the Program
or any part thereof.”

Again, the GPL relies here on what the copyright law says is a derivative
work. If, under copyright law, the modified version “contains or is derived
from” the GPL’d software, then the requirements of §2(b) apply. The GPL
invokes its control as a copyright license over the modification of the work
in combination with its control over distribution of the work.

The final clause of §2(b) describes what the licensee must do if she is
distributing or publishing a work that is deemed a derivative work under
copyright law — namely, the following:

[The work must] be licensed as a whole at no charge to all third
parties under the terms of this License.

That is probably the most tightly-packed phrase in all of the GPL. Consider
each subpart carefully.

1FSF does maintain that there is an ethical obligation to redistribute changes that

are generally useful, and often encourages companies and individuals to do so. However,

there is a clear distinction between what one ought to do and what one must do.

26

The work “as a whole” is what is to be licensed. This is an important
point that §2 spends an entire paragraph explaining; thus this phrase is
worthy of a lengthy discussion here. As a programmer modifies a software
program, she generates new copyrighted material — fixing expressions of
ideas into the tangible medium of electronic file storage. That programmer
is indeed the copyright holder of those new changes. However, those changes
are part and parcel to the original work distributed to the programmer under
GPL. Thus, the license of the original work affects the license of the new
whole derivative work.

It is certainly possible to take an existing independent work (called I)
and combine it with a GPL’d program (called G). The license of I, when it is
distributed as a separate and independent work, remains the prerogative of
the copyright holder of I. However, when I is combined with G, it produces
a new work that is the combination of the two (called G+I). The copyright
of this combined work, G+I, is held by the original copyright holder of each
of the two works.

In this case, §2 lays out the terms by which G+I may be distributed and
copied. By default, under copyright law, the copyright holder of I would not
have been permitted to distribute G+I; copyright law forbids it without the
expressed permission of the copyright holder of G. (Imagine, for a moment,
if G were a Microsoft product — would they give you permission to create
and distribute G+I without paying them a hefty sum?) The license of G, the
GPL, sets forth ahead of time options for the copyright holder of I who may
want to create and distribute G+I. This pregranted permission to create and
distribute derivative works, provided the terms of GPL are upheld, goes far
above and beyond the permissions that one would get with a typical work
not covered by a copyleft license. Thus, to say that this restriction is any
way unreasonable is simply ludicrous.

The next phrase of note in §2(b) is “licensed...at no charge.” This is
a source of great confusion to many. Not a month goes by that FSF does
not receive an email that claims to point out “a contradiction in GPL”
because §2 says that redistributors cannot charge for modified versions of
GPL’d software, but §1 says that they can. The “at no charge” does not
prohibit redistributors from charging when performing the acts governed by
copyright law,2 but rather that they cannot charge a fee for the license itself.
In other words, redistributors of (modified and unmodified) GPL’d works
may charge any amount they choose for performing the modifications on

2Recall that you could by default charge for any acts not governed by copyright law,

because the license controls are confined by copyright.

27

contract or the act of transferring the copy to the customer, but they may
not charge a separate licensing fee for the software.

§2(b) further states that the software must “be licensed...to all third
parties.” This too has led to some confusions, and feeds the misconception
mentioned earlier — that all modified versions must made available to the
public at large. However, the text here does not say that. Instead, it
says that the licensing under terms of the GPL must extend to anyone
who might, through the distribution chain, receive a copy of the software.
Distribution to all third parties is not mandated here, but §2(b) does require
redistributors to license the derivative works in a way that extends to all
third parties who may ultimately receive a copy of the software.

In summary, §2(b) says what terms under which the third parties must
receive this no-charge license. Namely, they receive it “under the terms of
this License,” the GPL. When an entity chooses to redistribute a derivative
work of GPL’d software, the license of that whole derivative work must be
GPL and only GPL. In this manner, §2(b) dovetails nicely with §6 (as
discussed in Section 6.3 of this tutorial).

The final paragraph of §2 is worth special mention. It is possible and
quite common to aggregate various software programs together on one dis-
tribution medium. Computer manufacturers do this when they ship a pre-
installed hard drive, and GNU/Linux distribution vendors do this to give
a one-stop CD or URL for a complete operating system with necessary ap-
plications. The GPL very clearly permits such “mere aggregation” with
programs under any license. Despite what you hear from its critics, the
GPL is nothing like a virus, not only because the GPL is good for you
and a virus is bad for you, but also because simple contact with a GPL’d
code-base does not impact the license of other programs. Actual effort must
be expended by a programmer to cause a work to fall under the terms of
the GPL. Redistributors are always welcome to simply ship GPL’d software
alongside proprietary software or other unrelated Free Software, as long as
the terms of GPL are adhered to for those packages that are truly GPL’d.

4.2 GPL §3: Producing Binaries

Software is a strange beast when compared to other copyrightable works. It
is currently impossible to make a film or a book that can be truly obscured.
Ultimately, the full text of a novel, even one written by William Faulkner,
must presented to the reader as words in some human-readable language so
that they can enjoy the work. A film, even one directed by David Lynch,

28

must be perceptible by human eyes and ears to have any value.
Software is not so. While the source code, the human-readable represen-

tation of software is of keen interest to programmers, users and programmers
alike cannot make the proper use of software in that human-readable form.
Binary code — the ones and zeros that the computer can understand —
must be predicable and attainable for the software to be fully useful. With-
out the binaries, be they in object or executable form, the software serves
only the didactic purposes of computer science.

Under copyright law, binary representations of the software are simply
derivative works of the source code. Applying a systematic process (i.e.,
“compilation”) to a work of source code yields binary code. The binary code
is now a new work of expression fixed in the tangible medium of electronic
file storage.

Therefore, for GPL’d software to be useful, the GPL, since it governs
the rules for creation of derivative works, must grant permission for the gen-
eration of binaries. Furthermore, notwithstanding the relative popularity of
source-based GNU/Linux distributions like Gentoo, users find it extremely
convenient to receive distribution of binary software. Such distribution is the
redistribution of derivative works of the software’s source code. §3 addresses
the matter of creation and distribution of binary versions.

Under §3, binary versions may be created and distributed under the
terms of §§1–2, so all the material previously discussed applies here. How-
ever, §3 must go a bit further. Access to the software’s source code is an
incontestable prerequisite for the exercise of the fundamental freedoms to
modify and improve the software. Making even the most trivial changes to
a software program at the binary level is effectively impossible. §3 must
ensure that the binaries are never distributed without the source code, so
that these freedoms are passed through the distribution chain.

§3 permits distribution of binaries, and then offers three options for
distribution of source code along with binaries. The most common and the
least complicated is the option given under §3(a).

§3(a) offers the option to directly accompany the source code alongside
the distribution of the binaries. This is by far the most convenient option
for most distributors, because it means that the source-code provision obli-
gations are fully completed at the time of binary distribution (more on that
later).

Under §3(a), the source code provided must be the “corresponding source
code.” Here “corresponding” primarily means that the source code provided
must be that code used to produce the binaries being distributed. That
source code must also be “complete.” A later paragraph of §3 explains in

29

detail what is meant by “complete.” In essence, it is all the material that
a programmer of average skill would need to actually use the source code
to produce the binaries she has received. Complete source is required so
that, if the licensee chooses, she should be able to exercise her freedoms to
modify and redistribute changes. Without the complete source, it would
not be possible to make changes that were actually directly derived from
the version received.

Furthermore, §3 is defending against a tactic that has in fact been seen
in FSF’s GPL enforcement. Under GPL, if you pay a high price for a copy
of GPL’d binaries (which comes with corresponding source, of course), you
have the freedom to redistribute that work at any fee you choose, or not
at all. Sometimes, companies attempt a GPL-violating cozenage whereby
they produce very specialized binaries (perhaps for an obscure architecture).
They then give source code that does correspond, but withhold the “incan-
tations” and build plans they used to make that source compile into the
specialized binaries. Therefore, §3 requires that the source code include
“meta-material” like scripts, interface definitions, and other material that is
used to “control compilation and installation” of the binaries. In this man-
ner, those further down the distribution chain are assured that they have
the unabated freedom to build their own derivative works from the sources
provided.

FSF (as authors of GPL) realizes that software distribution comes in
many forms. Embedded manufacturers, for example, have the freedom to
put GPL’d software into their PDAs with very tight memory and space
constraints. In such cases, putting the source right alongside the binaries on
the machine itself might not be an option. While it is recommended that
this be the default way that people comply with GPL, the GPL does provide
options when such distribution is infeasible.

§3, therefore, allows source code to be provided on any physical “medium
customarily used for software interchange.” By design, this phrase covers a
broad spectrum. At best, FSF can viably release a new GPL every ten years
or so. Thus, phrases like this must be adaptive to changes in the technology.
When GPL version 2 was first published in June 1991, distribution on mag-
netic tape was still common, and CD was relatively new. Today, CD is the
default, and for larger systems DVD-R is gaining adoption. This language
must adapt with changing technology.

Meanwhile, the binding created by the word “customarily” is key. Many
incorrectly believe that distributing binary on CD and source on the Internet
is acceptable. In the corporate world, it is indeed customary to simply
download CDs worth of data over a T1 or email large file attachments.

30

However, even today in the USA, many computer users with CD-ROM drives
are not connected to the Internet, and most people connected to the Internet
are connected via a 56K dial-up connection. Downloading CDs full of data
is not customary for them in the least. In some cities in Africa, computers
are becoming more common, but Internet connectivity is still available only
at a few centralized locations. Thus, the “customs” here must be normalized
for a worldwide userbase. Simply providing source on the Internet — while
it is a kind, friendly and useful thing to do — is not usually sufficient.

Note, however, a major exception to this rule, given by the last paragraph
of §3. If distribution of the binary files is made only on the Internet (i.e.,
“from a designated place”), then simply providing the source code right
alongside the binaries in the same place is sufficient to comply with §3.

As is shown above, Under §3(a), embedded manufacturers can put the
binaries on the device and ship the source code along on a CD. However,
sometimes this turns out to be too costly. Including a CD with every device
could prove too costly, and may practically (although not legally) prohibit
using GPL’d software. For this situation and others like it, §3(b) is available.

§3(b) allows a distributor of binaries to instead provide a written offer
for source code alongside those binaries. This is useful in two specific ways.
First, it may turn out that most users do not request the source, and thus
the cost of producing the CDs is saved — a financial and environmental
windfall. In addition, along with a §3(b) compliant offer for source, a binary
distributor might choose to also give a URL for source code. Many who
would otherwise need a CD with source might turn out to have those coveted
high bandwidth connections, and are able to download the source instead
— again yielding environmental and financial windfalls.

However, note that regardless of how many users prefer to get the source
online, §3(b) does place lasting long-term obligations on the binary distribu-
tor. The binary distributor must be prepared to honor that offer for source
for three years and ship it out (just as they would have had to do under
§3(a)) at a moment’s notice when they receive such a request. There is real
organizational cost here: support engineers must be trained how to route
source requests, and source CD images for every release version for the last
three years must be kept on hand to burn such CDs quickly. The requests
might not even come from actual customers; the offer for source must be
valid for “any third party.”

That phrase is another place where some get confused — thinking again
that full public distribution of source is required. The offer for source must
be valid for “any third party” because of the freedoms of redistribution

31

granted by §§1–2. A company may ship a binary image and an offer for
source to only one customer. However, under GPL, that customer has the
right to redistribute that software to the world if she likes. When she does,
that customer has an obligation to make sure that those who receive the
software from her can exercise their freedoms under GPL — including the
freedom to modify, rebuild, and redistribute the source code.

§3(c) is created to save her some trouble, because by itself §3(b) would
unfairly favor large companies. §3(b) allows the separation of the binary
software from the key tool that people can use to exercise their freedom.
The GPL permits this separation because it is good for redistributors, and
those users who turn out not to need the source. However, to ensure equal
rights for all software users, anyone along the distribution chain must have
the right to get the source and exercise those freedoms that require it.

Meanwhile, §3(b)’s compromise primarily benefits companies who dis-
tribute binary software commercially. Without §3(c), that benefit would be
at the detriment of the companies’ customers; the burden of source code pro-
vision would be unfairly shifted to the companies’ customers. A customer,
who had received binaries with a §3(b)-compliant offer, would be required
under GPL (sans §3(c)) to acquire the source, merely to give a copy of the
software to a friend who needed it. §3(c) reshifts this burden to entity who
benefits from §3(b).

§3(c) allows those who undertake noncommercial distribution to simply
pass along a §3(b)-compliant source code offer. The customer who wishes to
give a copy to her friend can now do so without provisioning the source, as
long as she gives that offer to her friend. By contrast, if she wanted to go into
business for herself selling CDs of that software, she would have to acquire
the source and either comply via §3(a), or write her own §3(b)-compliant
source offer.

This process is precisely the reason why a §3(b) source offer must be
valid for all third parties. At the time the offer is made, there is no way of
knowing who might end up noncommercially receiving a copy of the software.
Companies who choose to comply via §3(b) must thus be prepared to honor
all incoming source code requests. For this and the many other additional
necessary complications under §§3(b–c), it is only rarely a better option than
complying via §3(a).

32

Chapter 5

The Implied Patent Grant in

GPL

We digress again briefly from our section-by-section consideration of GPL
to consider the interaction between the terms of GPL and patent law. The
GPL, despite being silent with respect to patents, actually confers on its
licensees more rights to a licensor’s patents than those licenses that pur-
port to address the issue. This is the case because patent law, under the
doctrine of implied license, gives to each distributee of a patented article a
license from the distributor to practice any patent claims owned or held by
the distributor that cover the distributed article. The implied license also
extends to any patent claims owned or held by the distributor that cover
“reasonably contemplated uses” of the patented article. To quote the Fed-
eral Circuit Court of Appeals, the highest court for patent cases other than
the Supreme Court:

Generally, when a seller sells a product without restriction,
it in effect promises the purchaser that in exchange for the price
paid, it will not interfere with the purchaser’s full enjoyment of
the product purchased. The buyer has an implied license under
any patents of the seller that dominate the product or any uses of
the product to which the parties might reasonably contemplate
the product will be put.

Hewlett-Packard Co. v. Repeat-O-Type Stencil Mfg. Corp., Inc., 123 F.3d
1445 (Fed. Cir. 1997).

Of course, Free Software is licensed, not sold, and there are indeed restric-
tions placed on the licensee, but those differences are not likely to prevent

33

the application of the implied license doctrine to Free Software, because
software licensed under the GPL grants the licensee the right to make, use,
and sell the software, each of which are exclusive rights of a patent holder.
Therefore, although the GPL does not expressly grant the licensee the right
to do those things under any patents the licensor may have that cover the
software or its reasonably contemplated uses, by licensing the software un-
der the GPL, the distributor impliedly licenses those patents to the GPL
licensee with respect to the GPL licensed software.

An interesting issue regarding this implied patent license of GPL’d soft-
ware is what would be considered “uses of the [software] to which the parties
might reasonably contemplate the product will be put.” A clever advocate
may argue that the implied license granted by GPL is larger in scope than
the express license in other Free Software licenses with express patent grants,
in that, the patent license clause of many of those licenses are specifically
limited to the patent claims covered by the code as licensed by the patentee.

To the contrary, GPL’s implied patent license grants the GPL licensee
a patent license to do much more than just that because the GPL licensee,
under the doctrine of implied patent license, is free to practice any patent
claims held by the licensor that cover “reasonably contemplated uses” of
the GPL’d code, which may very well include creation and distribution of
derivative works since the GPL’s terms, under which the patented code is
distributed, expressly permits such activity.

Further supporting this result is the Federal Circuit’s pronouncement
that the recipient of a patented article has, not only an implied license to
make, use, and sell the article, but also an implied patent license to repair
the article to enable it to function properly, Bottom Line Mgmt., Inc. v. Pan
Man, Inc., 228 F.3d 1352 (Fed. Cir. 2000). Additionally, the Federal Circuit
extended that rule to include any future recipients of the patented article,
not just the direct recipient from the distributor. This theory comports well
with the idea of Free Software, whereby software is distributed amongst
many entities within the community for the purpose of constant evolution
and improvement. In this way, the law of implied patent license used by
the GPL ensures that the community mutually benefits from the licensing
of patents to any single community member.

Note that simply because GPL’d software has an implied patent license
does not mean that any patents held by a distributor of GPL’d code become
worthless. To the contrary, the patents are still valid and enforceable against
either:

(a) any software other than that licensed under the GPL by the patent

34

holder, and

(b) any party that does not comply with the GPL with respect to the
licensed software.

For example, if Company A has a patent on advanced Web browsing,
but also licenses a Web browsing software program under the GPL, then it
cannot assert the patent against any party that takes a license to its program
under the GPL. However, if a party uses that program without complying
with the GPL, then Company A can assert, not just copyright infringe-
ment claims against the non-GPL-compliant party, but also infringement of
the patent, because the implied patent license only extends to use of the
software in accordance with the GPL. Further, if Company B distributes a
competitive advanced Web browsing program, Company A is free to assert
its patent against any user or distributor of that product. It is irrelevant
whether Company B’s program is distributed under the GPL, as Company
B can not grant implied licenses to Company A’s patent.

This result also reassures companies that they need not fear losing their
proprietary value in patents to competitors through the GPL implied patent
license, as only those competitors who adopt and comply with the GPL’s
terms can benefit from the implied patent license. To continue the example
above, Company B does not receive a free ride on Company A’s patent,
as Company B has not licensed-in and then redistributed Company A’s
advanced Web browser under the GPL. If Company B does do that, however,
Company A still has not lost competitive advantage against Company B, as
Company B must then, when it re-distributes Company A’s program, grant
an implied license to any of its patents that cover the program. Further,
if Company B relicenses an improved version of Company A’s program, it
must do so under the GPL, meaning that any patents it holds that cover the
improved version are impliedly licensed to any licensee. As such, the only
way Company B can benefit from Company A’s implied patent license, is if
it, itself, distributes Company A’s software program and grants an implied
patent license to any of its patents that cover that program.

35

36

Chapter 6

Defending Freedom on Many

Fronts

Chapters 2 and 4 presented the core freedom-defending provisions of GPL,
which are in §§0–3. §§4–7 of the GPL are designed to ensure that §§0–3
are not infringed, are enforceable, are kept to the confines of copyright law,
and are not trumped by other copyright agreements or components of other
entirely separate legal systems. In short, while §§0–3 are the parts of the
license that defend the freedoms of users and programmers, §§4–7 are the
parts of the license that keep the playing field clear so that §§0–3 can do
their jobs.

6.1 GPL §4: Termination on Violation

§4 is GPL’s termination clause. Upon first examination, it seems strange
that a license with the goal of defending users’ and programmers’ freedoms
for perpetuity in an irrevocable way would have such a clause. However,
upon further examination, the difference between irrevocability and this
termination clause becomes clear.

The GPL is irrevocable in the sense that once a copyright holder grants
rights for someone to copy, modify and redistribute the software under terms
of the GPL, they cannot later revoke that grant. Since the GPL has no pro-
vision allowing the copyright holder to take such a prerogative, the license
is granted as long as the copyright remains in effect.1 The copyright holder

1In the USA, due to unfortunate legislation, the length of copyright is nearly perpetual,

even though the Constitution forbids perpetual copyright.

37

has the right to relicense the same work under different licenses (see Sec-
tion 9.2 of this tutorial), or to stop distributing the GPL’d version (assuming
§3(b) was never used), but she may not revoke the rights under GPL already
granted.

In fact, when an entity looses their right to copy, modify and distribute
GPL’d software, it is because of their own actions, not that of the copyright
holder. The copyright holder does not decided when §4 termination occurs
(if ever), the actions of the licensee does.

Under copyright law, the GPL has granted various rights and freedoms
to the licensee to perform specific types of copying, modification, and redis-
tribution. By default, all other types of copying, modification, and redistri-
bution are prohibited. §4 says that if you undertake any of those other types
(e.g., redistributing binary-only in violation of §3), then all rights under the
license — even those otherwise permitted for those who have not violated
— terminate automatically.

§4 gives GPL teeth. If licensees fail to adhere to the license, then they are
stuck. They must completely cease and desist from all copying, modification
and distribution of that GPL’d software.

At that point, violating licensees must gain the forgiveness of the copy-
right holder to have their rights restored. Alternatively, they could negotiate
another agreement, separate from GPL, with the copyright holder. Both are
common practice.

At FSF, it is part of the mission to spread software freedom. When
FSF enforces GPL, the goal is to bring the violator back into compliance as
quickly as possible, and redress the damage caused by the violation. That
is FSF’s steadfast position in a violation negotiation — comply with the
license and respect freedom.

However, other entities who do not share the full ethos of software free-
dom as institutionalized by FSF pursue GPL violations differently. MySQL
AB, a company that produces the GPL’d MySQL database, upon discover-
ing GPL violations typically negotiates a proprietary software license sepa-
rately for a fee. While this practice is not one that FSF would ever consider
undertaking or even endorsing, it is a legal way for copyright holders to
proceed.

6.2 GPL §5: Acceptance, Copyright Style

§5 brings us to perhaps the most fundamental misconception and common
confusion about GPL. Because of the prevalence of proprietary software,

38

most users, programmers, and lawyers alike tend to be more familiar with
EULAs. EULAs are believed by their authors to be contracts, requiring
formal agreement between the licensee and the software distributor to be
valid. This has led to mechanisms like “shrink-wrap” and “click-wrap” as
mechanisms to perform acceptance ceremonies with EULAs.

The GPL does not need contract law to “transfer rights.” No rights
are transfered between parties. By contrast, the GPL is a permission slip to
undertake activities that would otherwise have been prohibited by copyright
law. As such, it needs no acceptance ceremony; the licensee is not even
required to accept the license.

However, without the GPL, the activities of copying, modifying and
distributing the software would have otherwise been prohibited. So, the
GPL says that you only accepted the license by undertaking activities that
you would have otherwise been prohibited without your license under GPL.
This is a certainly subtle point, and requires a mindset quite different from
the contractual approach taken by EULA authors.

An interesting side benefit to §5 is that the bulk of users of Free Software
are not required to accept the license. Undertaking fair and unregulated use
of the work, for example, does not bind you to the GPL, since you are not
engaging in activity that is otherwise controlled by copyright law. Only when
you engage in those activities that might have an impact on the freedom of
others does license acceptance occur, and the terms begin to bind you to
fair and equitable sharing of the software. In other words, the GPL only
kicks in when it needs to for the sake of freedom.

6.3 GPL §6: GPL, My One and Only

A point that was glossed over in Section 6.1’s discussion of §4 was the irre-
vocable nature of the GPL. The GPL is indeed irrevocable, and it is made
so formally by §6.

The first sentence in §6 ensures that as software propagates down the
distribution chain, that each licensor can pass along the license to each new
licensee. Under §6, the act of distributing automatically grants a license
from the original licensor to the next recipient. This creates a chain of
grants that ensure that everyone in the distribution has rights under the
GPL. In a mathematical sense, this bounds the bottom — making sure
that future licensees get no fewer rights than the licensee before.

The second sentence of §6 does the opposite; it bounds from the top. It
prohibits any licensor along the distribution chain from placing additional

39

restrictions on the user. In other words, no additional requirements may
trump the rights and freedoms given by GPL.

The final sentence of §6 makes it abundantly clear that no individual
entity in the distribution chain is responsible for the compliance of any
other. This is particularly important for noncommercial users who have
passed along a source offer under §3(c), as they cannot be assured that the
issuer of the offer will honor their §3 obligations.

In short, §6 says that your license for the software is your one and only
copyright license allowing you to copy, modify and distribute the software.

6.4 GPL §7: “Give Software Liberty or Give It

Death!”

In essence, §7 is a verbosely worded way of saying for non-copyright systems
what §6 says for copyright. If there exists any reason that a distributor
knows of that would prohibit later licensees from exercising their full rights
under GPL, then distribution is prohibited.

Originally, this was designed as the title of this section suggests — as
a last ditch effort to make sure that freedom was upheld. However, in
modern times, it has come to give much more. Now that the body of GPL’d
software is so large, patent holders who would want to be distributors of
GPL’d software have a tough choice. They must choose between avoiding
distribution of GPL’d software that exercises the teachings of their patents,
or grant a royalty-free, irrevocable, non-exclusive license to those patents.
Many companies, including IBM, the largest patent holder in the world,
have chosen the latter.

Thus, §7 rarely gives software death by stopping its distribution. Instead,
it is inspiring patent holders to share their patents in the same freedom-
defending way that they share their copyrighted works.

6.5 GPL §8: Excluding Unfreedonia

§8 is rarely used by copyright holders. Its intention is that if a particular
country, say Unfreedonia, grants particular patents or allows copyrighted
interfaces (no country to our knowledge even permits those yet), that the
GPL’d software can continue in free and unabated distribution in the coun-
tries where such controls do not exist.

It is a partial “out” from §7. Without §8, if a copyright holder knew of
a patent in a particular country licensed in a GPL-incompatible way, then

40

she could not distribute under GPL, because the work could legitimately
end up in the hands of citizens of Unfreedonia.

It is an inevitable but sad reality that some countries are freer than
others. §8 exists to permit distribution in those countries that are free
without otherwise negating parts of the license.

41

42

Chapter 7

Odds, Ends, and Absolutely

No Warranty

§0–7 constitute the freedom-defending terms of the GPL. The remainder of
the GPL handles administrivia and issues concerning warranties and liabil-
ity.

7.1 GPL §9: FSF as Stewards of GPL

FSF reserves the exclusive right to publish future versions of the GPL; §9
expresses this. While the stewardship of the copyrights on the body of
GPL’d software around the world is shared among thousands of individuals
and organizations, the license itself needs a single steward. Forking of the
code is often regrettable but basically innocuous. Forking of licensing is
disastrous.

FSF has only released two versions of GPL — in 1989 and 1991. GPL
version 3 is under current internal drafting. FSF’s plan is to have a long
and engaging comment period. The goal of GPL is to defend freedom, and
a gigantic community depends on that freedom now. FSF hopes to take all
stakeholders’ opinions under advisement.

7.2 GPL §10: Relicensing Permitted

§10 reminds the licensee of what is already implied by the nature of copyright
law. Namely, the copyright holder of a particular software program has
the prerogative to grant alternative agreements under separate copyright
licenses.

43

7.3 GPL §11: No Warranty

All warranty disclaimer language tends to be shouted in all capital letters.
Apparently, there was once a case where the disclaimer language of an agree-
ment was negated because it was not “conspicuous” to one of the parties.
Therefore, to make such language “conspicuous,” people started placing it
in bold or capitalizing the entire text. It now seems to be voodoo tradition
of warranty disclaimer writing.

Some have argued the GPL is unenforceable in some jurisdictions because
its disclaimer of warranties is impermissibly broad. However, §11 contains a
jurisdictional savings provision, which states that it is to be interpreted only
as broadly as allowed by applicable law. Such a provision ensures that both
it, and the entire GPL, is enforceable in any jurisdiction, regardless of any
particular law regarding the permissibility of certain warranty disclaimers.

Finally, one important point to remember when reading §11 is that §1
permits the sale of warranty as an additional service, which §11 affirms.

7.4 GPL, §12: Limitation of Liability

There are many types of warranties, and in some jurisdictions some of them
cannot be disclaimed. Therefore, usually agreements will have both a war-
ranty disclaimer and a limitation of liability, as we have in §12. §11 thus
gets rid of all implied warranties that can legally be disavowed. §12, in turn,
limits the liability of the actor for any warranties that cannot legally be
disclaimed in a particular jurisdiction.

Again, some have argued the GPL is unenforceable in some jurisdictions
because its limitation of liability is impermissibly broad. However, §12, just
like its sister, §11, contains a jurisdictional savings provision, which states
that it is to be interpreted only as broadly as allowed by applicable law. As
stated above, such a provision ensures that both §12, and the entire GPL,
is enforceable in any jurisdiction, regardless of any particular law regarding
the permissibility of limiting liability.

So end the terms and conditions of the GNU General Public License.

44

Chapter 8

The Lesser GPL

As we have seen in our consideration of the GPL, its text is specifically
designed to cover all possible derivative works under copyright law. Our
goal in designing GPL was to make sure that any derivative work of GPL’d
software was itself released under GPL when distributed. Reaching as far
as copyright law will allow is the most direct way to reach that goal.

However, while the strategic goal is to bring as much Free Software into
the world as possible, particular tactical considerations regarding software
freedom dictate different means. Extending the copyleft effect as far as
copyright law allows is not always the most prudent course in reaching the
goal. In particular situations, even those of us with the goal of building a
world where all published software is Free Software realize that full copyleft
does not best serve us. The GNU Lesser General Public License (“GNU
LGPL”) was designed as a solution for such situations.

8.1 The First LGPL’d Program

The first example that FSF encountered where such altered tactics were
needed was when work began on the GNU C Library. The GNU C Library
would become (and today, now is) a drop-in replacement for existing C
libraries. On a Unix-like operating system, C is the lingua franca and the C
library is an essential component for all programs. It is extremely difficult
to construct a program that will run with ease on a Unix-like operating
system without making use of services provided by the C library — even
if the program is written in a language other than C. Effectively, all user
application programs that run on any modern Unix-like system must make
use of the C library.

45

By the time work began on the GNU implementation of the C libraries,
there were already many C libraries in existence from a variety of vendors.
Every proprietary Unix vendor had one, and many third parties produced
smaller versions for special purpose use. However, our goal was to create
a C library that would provide equivalent functionality to these other C
libraries on a Free Software operating system (which in fact happens today
on modern GNU/Linux systems, which all use the GNU C Library).

Unlike existing GNU application software, however, the licensing impli-
cations of releasing the GNU C Library (“glibc”) under GPL were somewhat
different. Applications released under GPL would never themselves become
part of proprietary software. However, if glibc were released under GPL, it
would require that any application distributed for the GNU/Linux platform
be released under GPL.

Since all applications on a Unix-like system depend on the C library,
it means that they must link with that library to function on the system.
In other words, all applications running on a Unix-like system must be
combined with the C library to form a new whole derivative work that is
composed of the original application and the C library. Thus, if glibc were
GPL’d, each and every application distributed for use on GNU/Linux would
also need to be GPL’d, since to even function, such applications would need
to be combined into larger derivative works by linking with glibc.

At first glance, such an outcome seems like a windfall for Free Software
advocates, since it stops all proprietary software development on GNU/Linux
systems. However, the outcome is a bit more subtle. In a world where
many C libraries already exist, many of which could easily be ported to
GNU/Linux, a GPL’d glibc would be unlikely to succeed. Proprietary ven-
dors would see the excellent opportunity to license their C libraries to anyone
who wished to write proprietary software for GNU/Linux systems. The de-
facto standard for the C library on GNU/Linux would likely be not glibc,
but the most popular proprietary one.

Meanwhile, the actual goal of releasing glibc under GPL — to ensure no
proprietary applications on GNU/Linux — would be unattainable in this
scenario. Furthermore, users of those proprietary applications would also
be users of a proprietary C library, not the Free glibc.

The Lesser GPL was initially conceived to handle this scenario. It was
clear that the existence of proprietary applications for GNU/Linux was in-
evitable. Since there were so many C libraries already in existence, a new
one under GPL would not stop that tide. However, if the new C library
were released under a license that permitted proprietary applications to link
with it, but made sure that the library itself remained Free, an ancillary goal

46

could be met. Users of proprietary applications, while they would not have
the freedom to copy, share, modify and redistribute the application itself,
would have the freedom to do so with respect to the C library.

There was no way the license of glibc could stop or even slow the cre-
ation of proprietary applications on GNU/Linux. However, loosening the
restrictions on the licensing of glibc ensured that nearly all proprietary ap-
plications at least used a Free C library rather than a proprietary one. This
trade-off is central to the reasoning behind the LGPL.

Of course, many people who use the LGPL today are not thinking in
these terms. In fact, they are often choosing the LGPL because they are
looking for a “compromise” between the GPL and the X11-style liberal
licensing. However, understanding FSF’s reasoning behind the creation of
the LGPL is helpful when studying the license.

8.2 What’s the Same?

Much of the text of the LGPL is identical to the GPL. As we begin our
discussion of the LGPL, we will first eliminate the sections that are identi-
cal, or that have the minor modification changing the word “Program” to
“Library.”

First, §1 of LGPL, the rules for verbatim copying of source, are equivalent
to those in GPL’s §1.

Second, §8 of LGPL is equivalent §4 of GPL. In both licenses, this
section handles termination in precisely the same manner.

§9 in LGPL is equivalent to §5 in GPL. Both sections assert that the
license is a copyright license, and handle the acceptance of those copyright
terms.

LGPL’s §10 is equivalent to GPL’s §6. They both protect the distribution
system of Free Software under these licenses, to ensure that up, down, and
throughout the distribution chain, each recipient of the software receives
identical rights under the license and no other restrictions are imposed.

LGPL’s §11 is GPL’s §7. As discussed, it is used to ensure that other
claims and legal realities, such as patent licenses and court judgments, do
not trump the rights and permissions granted by these licenses, and requires
that distribution be halted if such a trump is known to exist.

LGPL’s §12 adds the same features as GPL’s §8. These sections are used
to allow original copyright holders to forbid distribution in countries with
draconian laws that would otherwise contradict these licenses.

LGPL’s §13 sets up FSF as the steward of the LGPL, just as GPL’s

47

§9 does for GPL. Meanwhile, LGPL’s §14 reminds licensees that copyright
holders can grant exceptions to the terms of LGPL, just as GPL’s §10 re-
minds licensees of the same thing.

Finally, the assertions of no warranty and limitations of liability are
identical; thus LGPL’s §15 and §16 are the same as GPL’s §11 and §12.

As we see, the entire latter half of the license is identical. The parts
which set up the legal boundaries and meta-rules for the license are the
same. It is our intent that the two licenses operate under the same legal
mechanisms and are enforced precisely the same way.

We strike a difference only in the early portions of the license. Namely,
in the LGPL we go into deeper detail of granting various permissions to
create derivative works, so the redistributors can make some proprietary
derivatives. Since we simply do not allow the license to stretch as far as
copyright law does regarding what derivative works must be relicensed under
the same terms, we must go further to explain which derivative works we
will allow to be proprietary. Thus, we’ll see that the front matter of the
LGPL is a bit more wordy and detailed with regards to the permissions
granted to those who modify or redistribute the software.

8.3 Additions to the Preamble

Most of LGPL’s Preamble is identical, but the last seven paragraphs intro-
duce the concepts and reasoning behind creation of the license, presenting a
more generalized and briefer version of the story with which we began our
consideration of LGPL.

In short, FSF designed LGPL for those edge cases where the freedom of
the public can better be served by a more lax licensing system. FSF doesn’t
encourage use of LGPL automatically for any software that happens to be
a library; rather, FSF suggests that it only be used in specific cases, such as
the following:

• To encourage the widest possible use of a Free Software library, so
it becomes a de-facto standard over similar, although not interface-
identical, proprietary alternatives

• To encourage use of a Free Software library that already has interface-
identical proprietary competitors that are more developed

• To allow a greater number of users to get freedom, by encouraging
proprietary companies to pick a Free alternative for its otherwise pro-
prietary products

48

LGPL’s preamble sets forth the limits to which the license seeks to go in
chasing these goals. LGPL is designed to ensure that users who happen to
acquire software linked with such libraries have full freedoms with respect to
that library. They should have the ability to upgrade to a newer or modified
Free version or to make their own modifications, even if they cannot modify
the primary software program that links to that library.

Finally, the preamble introduces two terms used throughout the license
to clarify between the different types of derivative works: “works that use
the library,” and “works based on the library.” Unlike GPL, LGPL must
draw some lines regarding derivative works. We do this here in this license
because we specifically seek to liberalize the rights afforded to those who
make derivative works. In GPL, we reach as far as copyright law allows.
In LGPL, we want to draw a line that allows some derivative works copy-
right law would otherwise prohibit if the copyright holder exercised his full
permitted controls over the work.

8.4 A Work that Uses the Library

In the effort to allow certain proprietary derivative works and prohibit oth-
ers, LGPL distinguishes between two classes of derivative works: “works
based on the library,” and “works that use the library.” The distinction is
drawn on the bright line of binary (or runtime) derivative works and source
code derivatives. We will first consider the definition of a “work that uses
the library,” which is set forth in LGPL §5.

We noted in our discussion of GPL §3 (discussed in Section 4.2 of this
document) that binary programs when compiled and linked with GPL’d
software are derivative works of that GPL’d software. This includes both
linking that happens at compile-time (when the binary is created) or at
runtime (when the binary – including library and main program both –
is loaded into memory by the user). In GPL, binary derivative works are
controlled by the terms of the license (in GPL §3), and distributors of such
binary derivatives must release full corresponding source.

In the case of LGPL, these are precisely the types of derivative works
we wish to permit. This scenario, defined in LGPL as “a work that uses the
library,” works as follows:

• A new copyright holder creates a separate and independent work, I,
that makes interface calls (e.g., function calls) to the LGPL’d work,
called L, whose copyright is held by some other party. Note that since
I and L are separate and independent works, there is no copyright

49

obligation on this new copyright holder with regard to the licensing of
I, at least with regard to the source code.

• The new copyright holder, for her software to be useful, realizes that it
cannot run without combining I and L. Specifically, when she creates
a running binary program, that running binary must be a derivative
work, called L+I, that the user can run.

• Since L+I is a derivative work of both I and L, the license of L (the
LGPL) can put restrictions on the license of L+I. In fact, this is what
LGPL does.

We will talk about the specific restrictions LGPL places on “works that
use the library” in detail in Section 8.7. For now, focus on the logic related
to how the LGPL places requirements on the license of L+I. Note, first of
all, the similarity between this explanation and that in Section 4.1, which
discussed the combination of otherwise separate and independent works with
GPL’d code. Effectively, what LGPL does is say that when a new work
is otherwise separate and independent, but has interface calls out to an
LGPL’d library, then it is considered a “work that uses the library.”

In addition, the only reason that LGPL has any control over the licensing
of a “work that uses the library” is for the same reason that GPL has
some say over separate and independent works. Namely, such controls exist
because the binary combination (L+I) that must be created to make the
separate work (I) at all useful is a derivative work of the LGPL’d software
(L).

Thus, a two-question test that will help indicate if a particular work is
a “work that uses the library” under LGPL is as follows:

1. Is the source code of the new copyrighted work, I, a completely inde-
pendent work that stands by itself, and includes no source code from
L?

2. When the source code is compiled, does it create a derivative work by
combining with L, either by static (compile-time) or dynamic (run-
time) linking, to create a new binary work, L+I?

If the answers to both questions are “yes,” then I is most likely a “work
that uses the library.” If the answer to the first question “yes,” but the
answer to the second question is “no,” then most likely I is neither a “work
that uses the library” nor a “work based on the library.” If the answer to

50

the first question is “no,” but the answer to the second question is “yes,”
then an investigation into whether or not I is in fact a “work based on the
library” is warranted.

8.5 A Work Based on the Library

In short, a “work based on the library” could be defined as any derivative
work of LGPL’d software that cannot otherwise fit the definition of a “work
that uses the library.” A “work based on the library” extends the full width
and depth of copyright derivative works, in the same sense that GPL does.

Most typically, one creates a “work based on the library” by directly
modifying the source of the library. Such a work could also be created by
tightly integrating new software with the library. The lines are no doubt
fuzzy, just as they are with GPL’d works, since copyright law gives us no
litmus test for derivative works of a software program.

Thus, the test to use when considering whether something is a “work
based on the library” is as follows:

1. Is the new work, when in source form, a derivative work under copy-
right law of the LGPL’d work?

2. Is there no way in which the new work fits the definition of a “work
that uses the library”?

If the answer is “yes” to both these questions, then you most likely have
a “work based on the library.” If the answer is “no” to the first but “yes”
to the second, you are in a gray area between “work based on the library”
and a “work that uses the library.”

In our years of work with the LGPL, however, we have never seen a work
of software that was not clearly one or the other; the line is quite bright. At
times, though, we have seen cases where a derivative work appeared in some
ways to be a work that used the library and in other ways a work based on
the library. We overcame this problem by dividing the work into smaller
subunits. It was soon discovered that what we actually had were three
distinct components: the original LGPL’d work, a specific set of works that
used that library, and a specific set of works that were based on the library.
Once such distinctions are established, the licensing for each component
can be considered independently and the LGPL applied to each work as
prescribed.

51

8.6 Subtleties in Works that Use the Library

In our discussion of the definition of “works that use the library,” we left out
a few more complex details that relate to lower-level programming details.
The fourth paragraph of LGPL’s §5 covers these complexities, and it has
been a source of great confusion. Part of the confusion comes because a
deep understanding of how compiler programs work is nearly mandatory to
grasp the subtle nature of what §5, ¶4 seeks to cover. It helps some to note
that this is a border case that we cover in the license only so that when
such a border case is hit, the implications of using LGPL continue in the
expected way.

To understand this subtle point, we must recall the way that a compiler
operates. The compiler first generates object code, which are the binary
representations of various programming modules. Each of those modules is
usually not useful by itself; it becomes useful to a user of a full program
when those modules are linked into a full binary executable.

As we have discussed, the assembly of modules can happen at compile-
time or at runtime. Legally, there is no distinction between the two — both
create a derivative work by copying and combining portions of one work and
mixing them with another. However, under LGPL, there is a case in the
compilation process where the legal implications are different. Specifically,
while we know that a “work that uses the library” is one whose final binary
is a derivative work, but whose source is not, there are cases where the
object code — that intermediate step between source and final binary —
is a derivative work created by copying verbatim code from the LGPL’d
software.

For efficiency, when a compiler turns source code into object code, it
sometimes places literal portions of the copyrighted library code into the
object code for an otherwise separate independent work. In the normal
scenario, the derivative would not be created until final assembly and linking
of the executable occurred. However, when the compiler does this efficiency
optimization, at the intermediate object code step, a derivative work is
created.

LGPL’s §5, ¶4 is designed to handle this specific case. The intent of
the license is clearly that simply compiling software to “make use” of the
library does not in itself cause the compiled work to be a “work based on the
library.” However, since the compiler copies verbatim, copyrighted portions
of the library into the object code for the otherwise separate and indepen-
dent work, it would actually cause that object file to be a “work based on the
library.” It is not FSF’s intent that a mere compilation idiosyncrasy would

52

change the requirements on the users of the LGPL’d software. This para-
graph removes that restriction, allowing the implications of the license to be
the same regardless of the specific mechanisms the compiler uses underneath
to create the “work that uses the library.”

As it turns out, we have only once had anyone worry about this specific
idiosyncrasy, because that particular vendor wanted to ship object code
(rather than final binaries) to their customers and was worried about this
edge condition. The intent of clarifying this edge condition is primarily to
quell the worries of software engineers who understand the level of verbatim
code copying that a compiler often does, and to help them understand that
the full implications of LGPL are the same regardless of the details of the
compilation progress.

8.7 LGPL §6: Distributing Works that Use the

Library

Now that we have established a good working definition of works that “use”
and works that “are based on” the library, we will consider the rules for
distributing these two different works.

The rules for distributing “works that use the library” are covered in
§6 of LGPL. §6 is much like GPL’s §3, as it requires the release of source
when a binary version of the LGPL’d software is released. Of course, it
only requires that source code for the library itself be made available. The
work that “uses” the library need not be provided in source form. However,
there are also conditions in LGPL §6 to make sure that a user who wishes
to modify or update the library can do so.

LGPL §6 lists five choices with regard to supplying library source and
granting the freedom to modify that library source to users. We will first
consider the option given by §6(b), which describes the most common way
currently used for LGPL compliance on a “work that uses the library.”

§6(b) allows the distributor of a “work that uses the library” to simply
use a dynamically linked, shared library mechanism to link with the library.
This is by far the easiest and most straightforward option for distribution.
In this case, the executable of the work that uses the library will contain only
the “stub code” that is put in place by the shared library mechanism, and at
runtime the executable will combine with the shared version of the library
already resident on the user’s computer. If such a mechanism is used, it must
allow the user to upgrade and replace the library with interface-compatible
versions and still be able to use the “work that uses the library.” However,

53

all modern shared library mechanisms function as such, and thus §6(b) is
the simplest option, since it does not even require that the distributor of the
“work based on the library” ship copies of the library itself.

§6(a) is the option to use when, for some reason, a shared library mecha-
nism cannot be used. It requires that the source for the library be included,
in the typical GPL fashion, but it also has a requirement beyond that. The
user must be able to exercise her freedom to modify the library to its fullest
extent, and that means recombining it with the “work based on the library.”
If the full binary is linked without a shared library mechanism, the user must
have available the object code for the “work based on the library,” so that
the user can relink the application and build a new binary.

The remaining options in §6 are very similar to the other choices provided
by GPL §3. There are some additional options, but time does not permit
us in this course to go into those additional options. In almost all cases of
distribution under LGPL, either §6(a) or §6(b) are exercised.

8.8 Distribution of Works Based on the Library

Essentially, “works based on the library” must be distributed under the
same conditions as works under full GPL. In fact, we note that LGPL’s
§2 is nearly identical in its terms and requirements to GPL’s §2. There are
again subtle differences and additions, which time does not permit us to
cover in this course.

8.9 And the Rest

The remaining variations between LGPL and GPL cover the following con-
ditions:

• Allowing a licensing “upgrade” from LGPL to GPL (in LGPL §3)

• Binary distribution of the library only, covered in LGPL §4, which is
effectively equivalent to LGPL §3

• Creating aggregates of libraries that are not derivative works of each
other, and distributing them as a unit (in LGPL §7)

Due to time constraints, we cannot cover these additional terms in detail,
but they are mostly straightforward. The key to understanding LGPL is
understanding the difference between a “work based on the library” and a

54

“work that uses the library.” Once that distinction is clear, the remainder
of LGPL is close enough to GPL that the concepts discussed in our more
extensive GPL unit can be directly applied.

55

56

Chapter 9

Integrating the GPL into

Business Practices

Since GPL’d software is now extremely prevalent through the industry, it is
useful to have some basic knowledge about using GPL’d software in business
and how to build business models around GPL’d software.

9.1 Using GPL’d Software In-House

As discussed in Sections 2.1 and 6.2 of this tutorial, the GPL only governs
the activities of copying, modifying and distributing software programs that
are not governed by the license. Thus, in FSF’s view, simply installing the
software on a machine and using it is not controlled or limited in any way by
GPL. Using Free Software in general requires substantially fewer agreements
and less license compliance activity than any known proprietary software.

Even if a company engages heavily in copying the software throughout
the enterprise, such copying is not only permitted by §§1 and 3, but it is
encouraged! If the company simply deploys unmodified (or even modified)
Free Software throughout the organization for its employees to use, the
obligations under the license are very minimal. Using Free Software has a
substantially lower cost of ownership — both in licensing fees and in licensing
checking and handling – than the proprietary software equivalents.

9.2 Business Models

Using Free Software in house is certainly helpful, but a thriving market for
Free Software-oriented business models also exists. There is the traditional

57

model of selling copies of Free Software distributions. Many companies,
including IBM and Red Hat, make substantial revenue from this model.
IBM primarily chooses this model because they have found that for higher-
end hardware, the cost of the profit made from proprietary software licensing
fees is negligible. The real profit is in the hardware, but it is essential that
software be stable, reliable and dependable, and the users be allowed to have
unfettered access to it. Free Software, and GPL’d software in particular
(because IBM can be assured that proprietary versions of the same software
will not exists to compete on their hardware) is the right choice.

Red Hat has actually found that a “convenience fee” for Free Software,
when set at a reasonable price (around $60 or so), can produce some profit.
Even though Red Hat’s system is fully downloadable on their Web site,
people still go to local computer stores and buy copies of their box set,
which is simply a printed version of the manual (available under a Free
license as well) and the Free Software system it documents.

However, custom support, service, and software improvement contracts
are the most widely used models for GPL’d software. The GPL is central
to their success, because it ensures that the code base remains common,
and that large and small companies are on equal footing for access to the
technology. Consider, for example, the GNU Compiler Collection (GCC).
Cygnus Solutions, a company started in the early 1990s, was able to grow
steadily simply by providing services for GCC — mostly consisting of new
ports of GCC to different or new, embedded targets. Eventually, Cygnus
was so successful that it was purchased by Red Hat where it remains a
profitable division.

However, there are very small companies like CodeSourcery, as well as
other medium-sized companies like MontaVista and OpenTV that compete
in this space. Because the code-base is protect by GPL, it creates and
demands industry trust. Companies can cooperate on the software and im-
prove it for everyone. Meanwhile, companies who rely on GCC for their work
are happy to pay for improvements, and for ports to new target platforms.
Nearly all the changes fold back into the standard versions, and those forks
that exist remain freely available.

A final common business model that is perhaps the most controversial is
proprietary relicensing of a GPL’d code base. This is only an option for soft-
ware in which a particular entity is the sole copyright holder. As discussed
earlier in this tutorial, a copyright holder is permitted under copyright law
to license a software system under her copyright as many different ways as
she likes to as many different parties as she wishes.

58

Some companies, such as MySQL AB and TrollTech, use this to their
financial advantage with regard to a GPL’d code base. The standard version
is available from the company under the terms of the GPL. However, parties
can purchase separate proprietary software licensing for a fee.

This business model is problematic because it means that the GPL’d
code base must be developed in a somewhat monolithic way, because volun-
teer Free Software developers may be reluctant to assign their copyrights to
the company because it will not promise to always and forever license the
software as Free Software. Indeed, the company will surely use such code
contributions in proprietary versions licensed for fees.

9.3 Ongoing Compliance

GPL compliance is in fact a very simple matter – much simpler than typical
proprietary software agreements and EULAs. Usually, the most difficult
hurdle is changing from a proprietary software mindset to one that seeks
to foster a community of sharing and mutual support. Certainly complying
with the GPL from a users’ perspective gives substantially fewer headaches
than proprietary license compliance.

For those who go into the business of distributing modified

versions of GPL’d software, the burden is a bit higher, but not by much.
The glib answer is that by releasing the whole product as Free Software, it
is always easy to comply with the GPL. However, admittedly to the dismay
of FSF, many modern and complex software systems are built using both
proprietary and GPL’d components that are not legally derivative works
of each other. Sometimes, it is easier simply to improve existing GPL’d
application than to start from scratch. In exchange for that benefit, the
license requires that the modifier give back to the commons that made the
work easier in the first place. It is a reasonable trade-off and a way to help
build a better world while also making a profit.

Note that FSF does provide services to assist companies who need assis-
tance in complying with the GPL. You can contact FSF’s GPL Compliance
Labs at <compliance@fsf.org>.

If you are particularly interested in matters of GPL compliance, we rec-
ommend the second course in this series, GPL Compliance Case Studies and

Legal Ethics in Free Software Licensing , in which we discuss some real GPL
violation cases that FSF has worked to resolve. Consideration of such cases
can help give insight on how to handle GPL compliance in new situations.

59

60

The GNU General Public

License

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change Free Software—to
make sure the software is free for all its users. This General Public License
applies to most of the Free Software Foundation’s software and to any other
program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of Free Software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of Free Software (and charge for this service if
you wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new Free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

61

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this Free Software. If the
software is modified by someone else and passed on, we want its recipients
to know that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any Free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a Free program will
individually obtain patent licenses, in effect making the program proprietary.
To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modifi-
cation follow.

Terms and Conditions For Copying,
Distribution and Modification

0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The “Program,” be-
low, refers to any such program or work, and a “work based on the
Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without
limitation in the term “modification.”) Each licensee is addressed as
“you.”

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running
the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether
that is true depends on what the Program does.

62

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright no-
tice and disclaimer of warranty; keep intact all the notices that refer
to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Pro-
gram.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and dis-
tribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stat-
ing that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

(c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such in-
teractive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifi-
able sections of that work are not derived from the Program, and can
be reasonably considered independent and separate works in them-
selves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this

63

License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Pro-
gram with the Program (or with a work based on the Program) on a
volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sec-
tions 1 and 2 above on a medium customarily used for software
interchange; or,

(b) Accompany it with a written offer, valid for at least three years,
to give any third party, for a charge no more than your cost of
physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium custom-
arily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed
only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that
is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on

64

which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to
copy the source code from the same place counts as distribution of the
source code, even though third parties are not compelled to copy the
source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program ex-
cept as expressly provided under this License. Any attempt otherwise
to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, par-
ties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute
the Program or its derivative works. These actions are prohibited by
law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms
and conditions for copying, distributing or modifying the Program or
works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the orig-
inal licensor to copy, distribute or modify the Program subject to these
terms and conditions. You may not impose any further restrictions on
the recipients’ exercise of the rights granted herein. You are not re-
sponsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent in-
fringement or for any other reason (not limited to patent issues), con-
ditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute
so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would
not permit royalty-free redistribution of the Program by all those who

65

receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of
the Free Software distribution system, which is implemented by public
license practices. Many people have made generous contributions to
the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor
to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those coun-
tries, so that distribution is permitted only in or among countries not
thus excluded. In such case, this License incorporates the limitation
as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new ver-
sions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version,” you have the option of following the terms and condi-
tions either of that version or of any later version published by the
Free Software Foundation. If the Program does not specify a version
number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free pro-
grams whose distribution conditions are different, write to the author

66

to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we some-
times make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our Free Software
and of promoting the sharing and reuse of software generally.

No Warranty

11. Because the program is licensed free of charge, there is
no warranty for the program, to the extent permitted
by applicable law. Except when otherwise stated in writ-
ing the copyright holders and/or other parties provide
the program “as is” without warranty of any kind, either
expressed or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a
particular purpose. The entire risk as to the quality and
performance of the program is with you. Should the pro-
gram prove defective, you assume the cost of all necessary
servicing, repair or correction.

12. In no event unless required by applicable law or agreed to
in writing will any copyright holder, or any other party
who may modify and/or redistribute the program as per-
mitted above, be liable to you for damages, including any
general, special, incidental or consequential damages aris-
ing out of the use or inability to use the program (includ-
ing but not limited to loss of data or data being rendered
inaccurate or losses sustained by you or third parties or
a failure of the program to operate with any other pro-
grams), even if such holder or other party has been advised
of the possibility of such damages.

End of Terms and Conditions

67

Appendix: How to Apply These Terms to Your

New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it Free Software
which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the “copyright” line
and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it
does.
Copyright (C) yyyy name of author

This program is Free Software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free Soft-
ware Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Also add information on how to contact you by electronic and paper
mail.

If the program is interactive, make it output a short notice like this when
it starts in an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for
details type ‘show w’.
This is Free Software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

68

The hypothetical commands show w and show c should show the ap-
propriate parts of the General Public License. Of course, the commands
you use may be called something other than show w and show c; they could
even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
program
‘Gnomovision’ (which makes passes at compilers) written by
James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

69

70

The GNU Lesser General

Public License

Version 2.1, February 1999

Copyright c© 1991, 1999 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the
successor of the GNU Library Public License version 2, hence the version

number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public Licenses are
intended to guarantee your freedom to share and change Free Software—to
make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some spe-
cially designated software packages—typically libraries—of the Free Soft-
ware Foundation and other authors who decide to use it. You can use it
too, but we suggest you first think carefully about whether this license or
the ordinary General Public License is the better strategy to use in any
particular case, based on the explanations below.

When we speak of Free Software, we are referring to freedom of use, not
price. Our General Public Licenses are designed to make sure that you have
the freedom to distribute copies of Free Software (and charge for this service
if you wish); that you receive source code or can get it if you want it; that

71

you can change the software and use pieces of it in new Free programs; and
that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid dis-
tributors to deny you these rights or to ask you to surrender these rights.
These restrictions translate to certain responsibilities for you if you dis-
tribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or
for a fee, you must give the recipients all the rights that we gave you. You
must make sure that they, too, receive or can get the source code. If you
link other code with the library, you must provide complete object files to
the recipients, so that they can relink them with the library after making
changes to the library and recompiling it. And you must show them these
terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal permission
to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is
no warranty for the Free library. Also, if the library is modified by someone
else and passed on, the recipients should know that what they have is not the
original version, so that the original author’s reputation will not be affected
by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any
Free program. We wish to make sure that a company cannot effectively
restrict the users of a Free program by obtaining a restrictive license from
a patent holder. Therefore, we insist that any patent license obtained for a
version of the library must be consistent with the full freedom of use specified
in this license.

Most GNU software, including some libraries, is covered by the ordinary
GNU General Public License. This license, the GNU Lesser General Public
License, applies to certain designated libraries, and is quite different from
the ordinary General Public License. We use this license for certain libraries
in order to permit linking those libraries into non-Free programs.

When a program is linked with a library, whether statically or using a
shared library, the combination of the two is legally speaking a combined
work, a derivative of the original library. The ordinary General Public Li-
cense therefore permits such linking only if the entire combination fits its
criteria of freedom. The Lesser General Public License permits more lax
criteria for linking other code with the library.

We call this license the “Lesser” General Public License because it does
Less to protect the user’s freedom than the ordinary General Public License.

72

It also provides other Free Software developers Less of an advantage over
competing non-Free programs. These disadvantages are the reason we use
the ordinary General Public License for many libraries. However, the Lesser
license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage
the widest possible use of a certain library, so that it becomes a de-facto
standard. To achieve this, non-Free programs must be allowed to use the
library. A more frequent case is that a Free library does the same job as
widely used non-Free libraries. In this case, there is little to gain by limiting
the Free library to Free Software only, so we use the Lesser General Public
License.

In other cases, permission to use a particular library in non-Free pro-
grams enables a greater number of people to use a large body of Free soft-
ware. For example, permission to use the GNU C Library in non-Free pro-
grams enables many more people to use the whole GNU operating system,
as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the
users’ freedom, it does ensure that the user of a program that is linked with
the library has the freedom and the wherewithal to run that program using
a modified version of the library.

The precise terms and conditions for copying, distribution and modifi-
cation follow. Pay close attention to the difference between a “work based
on the library” and a “work that uses the library.” The former contains
code derived from the library, whereas the latter must be combined with
the library in order to run.

GNU Lesser General Public License
Terms and Conditions For Copying,

Distribution and Modification

0. This License Agreement applies to any software library or other pro-
gram which contains a notice placed by the copyright holder or other
authorized party saying it may be distributed under the terms of this
Lesser General Public License (also called “this License”). Each li-
censee is addressed as “you.”

A “library” means a collection of software functions and/or data pre-
pared so as to be conveniently linked with application programs (which
use some of those functions and data) to form executables.

The “library,” below, refers to any such software library or work which
has been distributed under these terms. A “work based on the library”

73

means either the library or any derivative work under copyright law:
that is to say, a work containing the library or a portion of it, either
verbatim or with modifications and/or translated straightforwardly
into another language. (Hereinafter, translation is included without
limitation in the term “modification.”)

“Source code” for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running
a program using the library is not restricted, and output from such a
program is covered only if its contents constitute a work based on the
library (independent of the use of the library in a tool for writing it).
Whether that is true depends on what the library does and what the
program that uses the library does.

1. You may copy and distribute verbatim copies of the library’s com-
plete source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the no-
tices that refer to this License and to the absence of any warranty;
and distribute a copy of this License along with the library.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the library or any portion of it,
thus forming a work based on the library, and copy and distribute such
modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

(a) The modified work must itself be a software library.

(b) You must cause the files modified to carry prominent notices stat-
ing that you changed the files and the date of any change.

(c) You must cause the whole of the work to be licensed at no charge
to all third parties under the terms of this License.

74

(d) If a facility in the modified library refers to a function or a table
of data to be supplied by an application program that uses the
facility, other than as an argument passed when the facility is
invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or ta-
ble, the facility still operates, and performs whatever part of its
purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the appli-
cation. Therefore, Subsection 2d requires that any application-
supplied function or table used by this function must be optional:
if the application does not supply it, the square root function
must still compute square roots.)

These requirements apply to the modified work as a whole. If identifi-
able sections of that work are not derived from the library, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the library,
the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the library.

In addition, mere aggregation of another work not based on the library
with the library (or with a work based on the library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the library. To do this,
you must alter all the notices that refer to this License, so that they
refer to the ordinary GNU General Public License version 2, instead
of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that
version instead if you wish.) Do not make any other change in these
notices.

75

Once this change is made in a given copy, it is irreversible for that copy,
so the ordinary GNU General Public License applies to all subsequent
copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the
library into a program that is not a library.

4. You may copy and distribute the library (or a portion or derivative of
it, under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you accompany it with the
complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source
code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the
source along with the object code.

5. A program that contains no derivative of any portion of the library, but
is designed to work with the library by being compiled or linked with
it, is called a “work that uses the library.” Such a work, in isolation,
is not a derivative work of the library, and therefore falls outside the
scope of this License.

However, linking a “work that uses the library” with the library creates
an executable that is a derivative of the library (because it contains
portions of the library), rather than a “work that uses the library.”
The executable is therefore covered by this License. Section 6 states
terms for distribution of such executables.

When a “work that uses the library” uses material from a header
file that is part of the library, the object code for the work may be
a derivative work of the library even though the source code is not.
Whether this is true is especially significant if the work can be linked
without the library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure
layouts and accessors, and small macros and small inline functions (ten
lines or less in length), then the use of the object file is unrestricted,
regardless of whether it is legally a derivative work. (Executables

76

containing this object code plus portions of the library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the library, you may distribute
the object code for the work under the terms of Section 6. Any ex-
ecutables containing that work also fall under Section 6, whether or
not they are linked directly with the library itself.

6. As an exception to the Sections above, you may also combine or link
a “work that uses the library” with the library to produce a work con-
taining portions of the library, and distribute that work under terms of
your choice, provided that the terms permit modification of the work
for the customer’s own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the
library is used in it and that the library and its use are covered by this
License. You must supply a copy of this License. If the work during
execution displays copyright notices, you must include the copyright
notice for the library among them, as well as a reference directing the
user to the copy of this License. Also, you must do one of these things:

(a) Accompany the work with the complete corresponding machine-
readable source code for the library including whatever changes
were used in the work (which must be distributed under Sections
1 and 2 above); and, if the work is an executable linked with
the library, with the complete machine-readable “work that uses
the library,” as object code and/or source code, so that the user
can modify the library and then relink to produce a modified
executable containing the modified library. (It is understood that
the user who changes the contents of definitions files in the library
will not necessarily be able to recompile the application to use
the modified definitions.)

(b) Use a suitable shared library mechanism for linking with the li-
brary. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user’s computer sys-
tem, rather than copying library functions into the executable,
and (2) will operate properly with a modified version of the li-
brary, if the user installs one, as long as the modified version is
interface-compatible with the version that the work was made
with.

77

(c) Accompany the work with a written offer, valid for at least three
years, to give the same user the materials specified in Subsection
6a, above, for a charge no more than the cost of performing this
distribution.

(d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

(e) Verify that the user has already received a copy of these materials
or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the library”
must include any data and utility programs needed for reproducing the
executable from it. However, as a special exception, the materials to be
distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions
of other proprietary libraries that do not normally accompany the
operating system. Such a contradiction means you cannot use both
them and the library together in an executable that you distribute.

7. You may place library facilities that are a work based on the library
side-by-side in a single library together with other library facilities
not covered by this License, and distribute such a combined library,
provided that the separate distribution of the work based on the library
and of the other library facilities is otherwise permitted, and provided
that you do these two things:

(a) Accompany the combined library with a copy of the same work
based on the library, uncombined with any other library facilities.
This must be distributed under the terms of the Sections above.

(b) Give prominent notice with the combined library of the fact that
part of it is a work based on the library, and explaining where to
find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the li-
brary except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, link with, or distribute the li-
brary is void, and will automatically terminate your rights under this

78

License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute
the library or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distribut-
ing the library (or any work based on the library), you indicate your
acceptance of this License to do so, and all its terms and conditions
for copying, distributing or modifying the library or works based on
it.

10. Each time you redistribute the library (or any work based on the li-
brary), the recipient automatically receives a license from the original
licensor to copy, distribute, link with or modify the library subject
to these terms and conditions. You may not impose any further re-
strictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties with this
License.

11. If, as a consequence of a court judgment or allegation of patent in-
fringement or for any other reason (not limited to patent issues), con-
ditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute
so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not
distribute the library at all. For example, if a patent license would
not permit royalty-free redistribution of the library by all those who
receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely
from distribution of the library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of
the Free Software distribution system which is implemented by public

79

license practices. Many people have made generous contributions to
the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor
to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

12. If the distribution and/or use of the library is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the library under this License may add an
explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new ver-
sions of the Lesser General Public License from time to time. Such
new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the library
specifies a version number of this License which applies to it and “any
later version,” you have the option of following the terms and condi-
tions either of that version or of any later version published by the
Free Software Foundation. If the library does not specify a license ver-
sion number, you may choose any version ever published by the Free
Software Foundation.

14. If you wish to incorporate parts of the library into other Free programs
whose distribution conditions are incompatible with these, write to the
author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by
the two goals of preserving the Free status of all derivatives of our Free
software and of promoting the sharing and reuse of software generally.

No Warranty

15. Because the library is licensed free of charge, there is
no warranty for the library, to the extent permitted by

80

applicable law. Except when otherwise stated in writing
the copyright holders and/or other parties provide the
library “as is” without warranty of any kind, either ex-
pressed or implied, including, but not limited to, the im-
plied warranties of merchantability and fitness for a par-
ticular purpose. The entire risk as to the quality and
performance of the library is with you. should the library
prove defective, you assume the cost of all necessary ser-
vicing, repair or correction.

16. In no event unless required by applicable law or agreed to
in writing will any copyright holder, or any other party
who may modify and/or redistribute the library as permit-
ted above, be liable to you for damages, including any gen-
eral, special, incidental or consequential damages arising
out of the use or inability to use the library (including
but not limited to loss of data or data being rendered
inaccurate or losses sustained by you or third parties or
a failure of the library to operate with any other soft-
ware), even if such holder or other party has been advised
of the possibility of such damages.

End of Terms and Conditions

81

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible
use to the public, we recommend making it Free Software that everyone can
redistribute and change. You can do so by permitting redistribution under
these terms (or, alternatively, under the terms of the ordinary General Public
License).

To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively convey
the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the library’s name and a brief idea of what it
does.
Copyright (C) year name of author

This library is Free Software; you can redistribute it and/or mod-
ify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1
of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied war-
ranty of MERCHANTABILITY or FITNESS FOR A PARTIC-
ULAR PURPOSE. See the GNU Lesser General Public License
for more details.

You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA

Also add information on how to contact you by electronic and paper
mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the library, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
program
‘Gnomovision’ (which makes passes at compilers) written by

82

James Hacker.

signature of Ty Coon, 1 April 1990
Ty Coon, President of Vice

That’s all there is to it!

83

